Fast data-driven learning of parallel MRI sampling patterns for large scale problems
Abstract In this study, a fast data-driven optimization approach, named bias-accelerated subset selection (BASS), is proposed for learning efficacious sampling patterns (SPs) with the purpose of reducing scan time in large-dimensional parallel MRI. BASS is applicable when Cartesian fully-sampled k-s...
Enregistré dans:
Auteurs principaux: | Marcelo V. W. Zibetti, Gabor T. Herman, Ravinder R. Regatte |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ba5a48c509ba4cda8e1e0b2270ad0ef3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Demand-Driven Data Acquisition for Large Scale Fleets
par: Philip Matesanz, et autres
Publié: (2021) -
Fast principal component analysis of large-scale genome-wide data.
par: Gad Abraham, et autres
Publié: (2014) -
Large-scale parallelization of nanomechanical mass spectrometry with weakly-coupled resonators
par: Stefano Stassi, et autres
Publié: (2019) -
Dynamic 31P-MRI and 31P-MRS of lower leg muscles in heart failure patients
par: Rajiv G. Menon, et autres
Publié: (2021) -
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
par: Marica Pesce, et autres
Publié: (2021)