Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice
ABSTRACT The gut microbiota has the capability to regulate homeostasis of the host metabolism. Since antibiotic exposure can adversely affect the microbiome, we hypothesized that antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we examined the effects of...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba63053a845b4f36b62a15a0c2303cd0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ba63053a845b4f36b62a15a0c2303cd0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ba63053a845b4f36b62a15a0c2303cd02021-12-02T19:46:18ZAntibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice10.1128/mSystems.00048-192379-5077https://doaj.org/article/ba63053a845b4f36b62a15a0c2303cd02019-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00048-19https://doaj.org/toc/2379-5077ABSTRACT The gut microbiota has the capability to regulate homeostasis of the host metabolism. Since antibiotic exposure can adversely affect the microbiome, we hypothesized that antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we examined the effects of antibiotic treatments, including vancomycin (Vanc) and ciprofloxacin-metronidazole (CiMe), on the gut microbiome and metabolome in colonic contents and tissues in both male and female mice. We found that the relative abundances and structural composition of Firmicutes were significantly reduced in female mice after both Vanc and CiMe treatments but in male mice only after treatment with Vanc. However, Vanc exposure considerably altered the relative abundances and structural composition of representatives of the Proteobacteria especially in male mice. The levels of short-chain fatty acids (SCFAs; acetate, butyrate, and propionate) in colonic contents and tissues were significantly decreased in female mice after both antibiotic treatments, while these reductions were detected in male mice only after Vanc treatment. However, another SCFA, formate, exhibited the opposite tendency in colonic tissues. Both antibiotic exposures significantly decreased the levels of alanine, branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) and aromatic amino acids (AAAs; phenylalanine and tyrosine) in colonic contents of female mice but not in male mice. Additionally, female mice had much greater correlations between microbe and metabolite than male mice. These findings suggest that sex-dependent effects should be considered for antibiotic-induced modifications of the gut microbiota and host metabolism. IMPORTANCE Accumulating evidence shows that the gut microbiota regulates host metabolism by producing a series of metabolites, such as amino acids, bile acids, fatty acids, and others. These metabolites have a positive or negative effect on host health. Antibiotic exposure can disrupt the gut microbiota and thereby affect host metabolism and physiology. However, there are a limited number of studies addressing whether antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we uncovered a sex-dependent difference in antibiotic effects on the gut microbiota and metabolome in colonic contents and tissues in mice. These findings reveal that sex-dependent effects need to be considered for antibiotic use in scientific research or clinical practice. Moreover, this study will also give an important direction for future use of antibiotics to modify the gut microbiome and host metabolism in a sex-specific manner.Hongchang GaoQi ShuJiuxia ChenKai FanPengtao XuQi ZhouChen LiHong ZhengAmerican Society for Microbiologyarticleamino acid metabolismantibioticmicrobiomesex-dependent effectshort-chain fatty acidMicrobiologyQR1-502ENmSystems, Vol 4, Iss 4 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
amino acid metabolism antibiotic microbiome sex-dependent effect short-chain fatty acid Microbiology QR1-502 |
spellingShingle |
amino acid metabolism antibiotic microbiome sex-dependent effect short-chain fatty acid Microbiology QR1-502 Hongchang Gao Qi Shu Jiuxia Chen Kai Fan Pengtao Xu Qi Zhou Chen Li Hong Zheng Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice |
description |
ABSTRACT The gut microbiota has the capability to regulate homeostasis of the host metabolism. Since antibiotic exposure can adversely affect the microbiome, we hypothesized that antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we examined the effects of antibiotic treatments, including vancomycin (Vanc) and ciprofloxacin-metronidazole (CiMe), on the gut microbiome and metabolome in colonic contents and tissues in both male and female mice. We found that the relative abundances and structural composition of Firmicutes were significantly reduced in female mice after both Vanc and CiMe treatments but in male mice only after treatment with Vanc. However, Vanc exposure considerably altered the relative abundances and structural composition of representatives of the Proteobacteria especially in male mice. The levels of short-chain fatty acids (SCFAs; acetate, butyrate, and propionate) in colonic contents and tissues were significantly decreased in female mice after both antibiotic treatments, while these reductions were detected in male mice only after Vanc treatment. However, another SCFA, formate, exhibited the opposite tendency in colonic tissues. Both antibiotic exposures significantly decreased the levels of alanine, branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) and aromatic amino acids (AAAs; phenylalanine and tyrosine) in colonic contents of female mice but not in male mice. Additionally, female mice had much greater correlations between microbe and metabolite than male mice. These findings suggest that sex-dependent effects should be considered for antibiotic-induced modifications of the gut microbiota and host metabolism. IMPORTANCE Accumulating evidence shows that the gut microbiota regulates host metabolism by producing a series of metabolites, such as amino acids, bile acids, fatty acids, and others. These metabolites have a positive or negative effect on host health. Antibiotic exposure can disrupt the gut microbiota and thereby affect host metabolism and physiology. However, there are a limited number of studies addressing whether antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we uncovered a sex-dependent difference in antibiotic effects on the gut microbiota and metabolome in colonic contents and tissues in mice. These findings reveal that sex-dependent effects need to be considered for antibiotic use in scientific research or clinical practice. Moreover, this study will also give an important direction for future use of antibiotics to modify the gut microbiome and host metabolism in a sex-specific manner. |
format |
article |
author |
Hongchang Gao Qi Shu Jiuxia Chen Kai Fan Pengtao Xu Qi Zhou Chen Li Hong Zheng |
author_facet |
Hongchang Gao Qi Shu Jiuxia Chen Kai Fan Pengtao Xu Qi Zhou Chen Li Hong Zheng |
author_sort |
Hongchang Gao |
title |
Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice |
title_short |
Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice |
title_full |
Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice |
title_fullStr |
Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice |
title_full_unstemmed |
Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice |
title_sort |
antibiotic exposure has sex-dependent effects on the gut microbiota and metabolism of short-chain fatty acids and amino acids in mice |
publisher |
American Society for Microbiology |
publishDate |
2019 |
url |
https://doaj.org/article/ba63053a845b4f36b62a15a0c2303cd0 |
work_keys_str_mv |
AT hongchanggao antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice AT qishu antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice AT jiuxiachen antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice AT kaifan antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice AT pengtaoxu antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice AT qizhou antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice AT chenli antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice AT hongzheng antibioticexposurehassexdependenteffectsonthegutmicrobiotaandmetabolismofshortchainfattyacidsandaminoacidsinmice |
_version_ |
1718376047636905984 |