Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2

Abstract Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Z. L. Sun, A. F. Wang, H. M. Mu, H. H. Wang, Z. F. Wang, T. Wu, Z. Y. Wang, X. Y. Zhou, X. H. Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/ba63076675ac4212a1db347de9c57692
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ba63076675ac4212a1db347de9c57692
record_format dspace
spelling oai:doaj.org-article:ba63076675ac4212a1db347de9c576922021-11-21T12:41:47ZField-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb210.1038/s41535-021-00397-42397-4648https://doaj.org/article/ba63076675ac4212a1db347de9c576922021-11-01T00:00:00Zhttps://doi.org/10.1038/s41535-021-00397-4https://doaj.org/toc/2397-4648Abstract Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However, the application of AMR in antiferromagnet-based spintronics is usually hindered by the small AMR value. Here, we discover a colossal AMR with its value reaching 1.84 × 106% at 2 K, which stems from the field-induced metal-to-insulator transition (MIT), in a nearly Dirac material EuMnSb2. Density functional theory calculations identify a Dirac-like band around the Y point that depends strongly on the spin–orbit coupling and dominates the electrical transport. The indirect band gap at the Fermi level evolves with magnetic structure of Eu2+ moments, consequently giving rise to the field-induced MIT and the colossal AMR. Our results suggest that the antiferromagnetic topological materials can serve as a fertile ground for spintronics applications.Z. L. SunA. F. WangH. M. MuH. H. WangZ. F. WangT. WuZ. Y. WangX. Y. ZhouX. H. ChenNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 6, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
Z. L. Sun
A. F. Wang
H. M. Mu
H. H. Wang
Z. F. Wang
T. Wu
Z. Y. Wang
X. Y. Zhou
X. H. Chen
Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2
description Abstract Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However, the application of AMR in antiferromagnet-based spintronics is usually hindered by the small AMR value. Here, we discover a colossal AMR with its value reaching 1.84 × 106% at 2 K, which stems from the field-induced metal-to-insulator transition (MIT), in a nearly Dirac material EuMnSb2. Density functional theory calculations identify a Dirac-like band around the Y point that depends strongly on the spin–orbit coupling and dominates the electrical transport. The indirect band gap at the Fermi level evolves with magnetic structure of Eu2+ moments, consequently giving rise to the field-induced MIT and the colossal AMR. Our results suggest that the antiferromagnetic topological materials can serve as a fertile ground for spintronics applications.
format article
author Z. L. Sun
A. F. Wang
H. M. Mu
H. H. Wang
Z. F. Wang
T. Wu
Z. Y. Wang
X. Y. Zhou
X. H. Chen
author_facet Z. L. Sun
A. F. Wang
H. M. Mu
H. H. Wang
Z. F. Wang
T. Wu
Z. Y. Wang
X. Y. Zhou
X. H. Chen
author_sort Z. L. Sun
title Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2
title_short Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2
title_full Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2
title_fullStr Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2
title_full_unstemmed Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2
title_sort field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly dirac material eumnsb2
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ba63076675ac4212a1db347de9c57692
work_keys_str_mv AT zlsun fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT afwang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT hmmu fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT hhwang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT zfwang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT twu fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT zywang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT xyzhou fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
AT xhchen fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2
_version_ 1718418848732938240