Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2
Abstract Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However,...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba63076675ac4212a1db347de9c57692 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ba63076675ac4212a1db347de9c57692 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ba63076675ac4212a1db347de9c576922021-11-21T12:41:47ZField-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb210.1038/s41535-021-00397-42397-4648https://doaj.org/article/ba63076675ac4212a1db347de9c576922021-11-01T00:00:00Zhttps://doi.org/10.1038/s41535-021-00397-4https://doaj.org/toc/2397-4648Abstract Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However, the application of AMR in antiferromagnet-based spintronics is usually hindered by the small AMR value. Here, we discover a colossal AMR with its value reaching 1.84 × 106% at 2 K, which stems from the field-induced metal-to-insulator transition (MIT), in a nearly Dirac material EuMnSb2. Density functional theory calculations identify a Dirac-like band around the Y point that depends strongly on the spin–orbit coupling and dominates the electrical transport. The indirect band gap at the Fermi level evolves with magnetic structure of Eu2+ moments, consequently giving rise to the field-induced MIT and the colossal AMR. Our results suggest that the antiferromagnetic topological materials can serve as a fertile ground for spintronics applications.Z. L. SunA. F. WangH. M. MuH. H. WangZ. F. WangT. WuZ. Y. WangX. Y. ZhouX. H. ChenNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 6, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 Z. L. Sun A. F. Wang H. M. Mu H. H. Wang Z. F. Wang T. Wu Z. Y. Wang X. Y. Zhou X. H. Chen Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2 |
description |
Abstract Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However, the application of AMR in antiferromagnet-based spintronics is usually hindered by the small AMR value. Here, we discover a colossal AMR with its value reaching 1.84 × 106% at 2 K, which stems from the field-induced metal-to-insulator transition (MIT), in a nearly Dirac material EuMnSb2. Density functional theory calculations identify a Dirac-like band around the Y point that depends strongly on the spin–orbit coupling and dominates the electrical transport. The indirect band gap at the Fermi level evolves with magnetic structure of Eu2+ moments, consequently giving rise to the field-induced MIT and the colossal AMR. Our results suggest that the antiferromagnetic topological materials can serve as a fertile ground for spintronics applications. |
format |
article |
author |
Z. L. Sun A. F. Wang H. M. Mu H. H. Wang Z. F. Wang T. Wu Z. Y. Wang X. Y. Zhou X. H. Chen |
author_facet |
Z. L. Sun A. F. Wang H. M. Mu H. H. Wang Z. F. Wang T. Wu Z. Y. Wang X. Y. Zhou X. H. Chen |
author_sort |
Z. L. Sun |
title |
Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2 |
title_short |
Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2 |
title_full |
Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2 |
title_fullStr |
Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2 |
title_full_unstemmed |
Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2 |
title_sort |
field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly dirac material eumnsb2 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ba63076675ac4212a1db347de9c57692 |
work_keys_str_mv |
AT zlsun fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT afwang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT hmmu fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT hhwang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT zfwang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT twu fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT zywang fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT xyzhou fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 AT xhchen fieldinducedmetaltoinsulatortransitionandcolossalanisotropicmagnetoresistanceinanearlydiracmaterialeumnsb2 |
_version_ |
1718418848732938240 |