Precisely tuneable energy transfer system using peptoid helix-based molecular scaffold

Abstract The energy flow during natural photosynthesis is controlled by maintaining the spatial arrangement of pigments, employing helices as scaffolds. In this study, we have developed porphyrin-peptoid (pigment-helix) conjugates (PPCs) that can modulate the donor-acceptor energy transfer efficienc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boyeong Kang, Woojin Yang, Sebok Lee, Sudipto Mukherjee, Jonathan Forstater, Hanna Kim, Byoungsook Goh, Tae-Young Kim, Vincent A. Voelz, Yoonsoo Pang, Jiwon Seo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ba717293ef804b1eb499b63cae6f7d36
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The energy flow during natural photosynthesis is controlled by maintaining the spatial arrangement of pigments, employing helices as scaffolds. In this study, we have developed porphyrin-peptoid (pigment-helix) conjugates (PPCs) that can modulate the donor-acceptor energy transfer efficiency with exceptional precision by controlling the relative distance and orientation of the two pigments. Five donor-acceptor molecular dyads were constructed using zinc porphyrin and free base porphyrin (Zn(i + 2)–Zn(i + 6)), and highly efficient energy transfer was demonstrated with estimated efficiencies ranging from 92% to 96% measured by static fluorescence emission in CH2Cl2 and from 96.3% to 97.6% using femtosecond transient absorption measurements in toluene, depending on the relative spatial arrangement of the donor-acceptor pairs. Our results suggest that the remarkable precision and tunability exhibited by nature can be achieved by mimicking the design principles of natural photosynthetic proteins.