Ensemble Encoder–Decoder Models for Predicting Land Transformation
Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in mitigating severe climate situations and improving the resiliency of communities. Current predictive models in land transformation have not paid a se...
Guardado en:
Autores principales: | Pariya Pourmohammadi, Michael P. Strager, Donald A. Adjeroh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba72a4acdabb4772a1d4a1fcf1a7a397 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Multisensor Land Cover Classification With Sparsely Annotated Data Based on Convolutional Neural Networks and Self-Distillation
por: Yawogan Jean Eudes Gbodjo, et al.
Publicado: (2021) -
Unsupervised Cluster Guided Object Detection in Aerial Images
por: Jiajia Liao, et al.
Publicado: (2021) -
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021) -
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021)