Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline

Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.

Guardado en:
Detalles Bibliográficos
Autores principales: Ziqi Tang, Kangway V. Chuang, Charles DeCarli, Lee-Way Jin, Laurel Beckett, Michael J. Keiser, Brittany N. Dugger
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ba915e392b8548368af02fe9f5bed428
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.