Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline

Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.

Guardado en:
Detalles Bibliográficos
Autores principales: Ziqi Tang, Kangway V. Chuang, Charles DeCarli, Lee-Way Jin, Laurel Beckett, Michael J. Keiser, Brittany N. Dugger
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ba915e392b8548368af02fe9f5bed428
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ba915e392b8548368af02fe9f5bed428
record_format dspace
spelling oai:doaj.org-article:ba915e392b8548368af02fe9f5bed4282021-12-02T15:35:26ZInterpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline10.1038/s41467-019-10212-12041-1723https://doaj.org/article/ba915e392b8548368af02fe9f5bed4282019-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10212-1https://doaj.org/toc/2041-1723Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.Ziqi TangKangway V. ChuangCharles DeCarliLee-Way JinLaurel BeckettMichael J. KeiserBrittany N. DuggerNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ziqi Tang
Kangway V. Chuang
Charles DeCarli
Lee-Way Jin
Laurel Beckett
Michael J. Keiser
Brittany N. Dugger
Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
description Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.
format article
author Ziqi Tang
Kangway V. Chuang
Charles DeCarli
Lee-Way Jin
Laurel Beckett
Michael J. Keiser
Brittany N. Dugger
author_facet Ziqi Tang
Kangway V. Chuang
Charles DeCarli
Lee-Way Jin
Laurel Beckett
Michael J. Keiser
Brittany N. Dugger
author_sort Ziqi Tang
title Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
title_short Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
title_full Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
title_fullStr Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
title_full_unstemmed Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
title_sort interpretable classification of alzheimer’s disease pathologies with a convolutional neural network pipeline
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/ba915e392b8548368af02fe9f5bed428
work_keys_str_mv AT ziqitang interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline
AT kangwayvchuang interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline
AT charlesdecarli interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline
AT leewayjin interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline
AT laurelbeckett interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline
AT michaeljkeiser interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline
AT brittanyndugger interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline
_version_ 1718386557776297984