Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba915e392b8548368af02fe9f5bed428 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ba915e392b8548368af02fe9f5bed428 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ba915e392b8548368af02fe9f5bed4282021-12-02T15:35:26ZInterpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline10.1038/s41467-019-10212-12041-1723https://doaj.org/article/ba915e392b8548368af02fe9f5bed4282019-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10212-1https://doaj.org/toc/2041-1723Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.Ziqi TangKangway V. ChuangCharles DeCarliLee-Way JinLaurel BeckettMichael J. KeiserBrittany N. DuggerNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Ziqi Tang Kangway V. Chuang Charles DeCarli Lee-Way Jin Laurel Beckett Michael J. Keiser Brittany N. Dugger Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline |
description |
Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue. |
format |
article |
author |
Ziqi Tang Kangway V. Chuang Charles DeCarli Lee-Way Jin Laurel Beckett Michael J. Keiser Brittany N. Dugger |
author_facet |
Ziqi Tang Kangway V. Chuang Charles DeCarli Lee-Way Jin Laurel Beckett Michael J. Keiser Brittany N. Dugger |
author_sort |
Ziqi Tang |
title |
Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline |
title_short |
Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline |
title_full |
Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline |
title_fullStr |
Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline |
title_full_unstemmed |
Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline |
title_sort |
interpretable classification of alzheimer’s disease pathologies with a convolutional neural network pipeline |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ba915e392b8548368af02fe9f5bed428 |
work_keys_str_mv |
AT ziqitang interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline AT kangwayvchuang interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline AT charlesdecarli interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline AT leewayjin interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline AT laurelbeckett interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline AT michaeljkeiser interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline AT brittanyndugger interpretableclassificationofalzheimersdiseasepathologieswithaconvolutionalneuralnetworkpipeline |
_version_ |
1718386557776297984 |