Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.
Enregistré dans:
Auteurs principaux: | Ziqi Tang, Kangway V. Chuang, Charles DeCarli, Lee-Way Jin, Laurel Beckett, Michael J. Keiser, Brittany N. Dugger |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ba915e392b8548368af02fe9f5bed428 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values
par: Abdul Karim, et autres
Publié: (2021) -
Graphite Classification Based on Improved Convolution Neural Network
par: Guangjun Liu, et autres
Publié: (2021) -
Filter Bank Convolutional Neural Network for SSVEP Classification
par: Dechun Zhao, et autres
Publié: (2021) -
An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks
par: Sapna Juneja, et autres
Publié: (2021) -
Improving the Classification of Alzheimer’s Disease Using Hybrid Gene Selection Pipeline and Deep Learning
par: Nivedhitha Mahendran, et autres
Publié: (2021)