Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
Convolutional neural networks have been applied to various areas of medical imaging and histology. Here the authors develop an automated approach using interpretable neural networks to determine Alzheimer’s disease plaque and cerebral amyloid angiopathy burden in post-mortem human brain tissue.
Guardado en:
Autores principales: | Ziqi Tang, Kangway V. Chuang, Charles DeCarli, Lee-Way Jin, Laurel Beckett, Michael J. Keiser, Brittany N. Dugger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba915e392b8548368af02fe9f5bed428 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values
por: Abdul Karim, et al.
Publicado: (2021) -
Graphite Classification Based on Improved Convolution Neural Network
por: Guangjun Liu, et al.
Publicado: (2021) -
Filter Bank Convolutional Neural Network for SSVEP Classification
por: Dechun Zhao, et al.
Publicado: (2021) -
An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks
por: Sapna Juneja, et al.
Publicado: (2021) -
Improving the Classification of Alzheimer’s Disease Using Hybrid Gene Selection Pipeline and Deep Learning
por: Nivedhitha Mahendran, et al.
Publicado: (2021)