Active Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing
To solve the attitude control problem of bird-like flapping wing micro air vehicles (FWMAVs) during automatic landing, an active disturbance rejection control (ADRC) architecture is proposed in this paper. This control scheme takes into account the attitude control of flapping, transition and glidin...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba988da0a78b48b3b69f69c5900fe149 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ba988da0a78b48b3b69f69c5900fe149 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ba988da0a78b48b3b69f69c5900fe1492021-11-19T00:05:45ZActive Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing2169-353610.1109/ACCESS.2020.3024793https://doaj.org/article/ba988da0a78b48b3b69f69c5900fe1492020-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9199860/https://doaj.org/toc/2169-3536To solve the attitude control problem of bird-like flapping wing micro air vehicles (FWMAVs) during automatic landing, an active disturbance rejection control (ADRC) architecture is proposed in this paper. This control scheme takes into account the attitude control of flapping, transition and gliding modes in the process of automatic landing. To verify the control effect, the aerodynamic estimation method of the flapping wing based on quasi-steady theory and the dynamics of an FWMAV in Lagrangian form are applied in the simulation. The proposed control architecture consists of two independent ADRC controllers to stabilize the attitude of the pitch and roll channels. The system disturbance and the coupling effects between channels are estimated by an extended state observer (ESO) and compensated in real time in the control output. The convergence of the ESO and ADRC is proven. Simulation results show that even if the aircraft is in different flight modes, the ADRC controller can track the target trajectory quickly and accurately. Then, to realize automatic landing in a real environment, a simplified two-stage landing trajectory is designed. A landing test is carried out on this basis. The test results show that ADRC can not only stabilize the flight attitude in flapping mode but also obtain a satisfactory control accuracy and convergence speed when the aircraft is in the transition and gliding modes, confirming its usefulness in automatic landing.Shaoran LiangBifeng SongJianlin XuanIEEEarticleFlapping wing micro air vehicleactive disturbance rejection controlattitude control automatic landingElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 8, Pp 171359-171372 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Flapping wing micro air vehicle active disturbance rejection control attitude control automatic landing Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Flapping wing micro air vehicle active disturbance rejection control attitude control automatic landing Electrical engineering. Electronics. Nuclear engineering TK1-9971 Shaoran Liang Bifeng Song Jianlin Xuan Active Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing |
description |
To solve the attitude control problem of bird-like flapping wing micro air vehicles (FWMAVs) during automatic landing, an active disturbance rejection control (ADRC) architecture is proposed in this paper. This control scheme takes into account the attitude control of flapping, transition and gliding modes in the process of automatic landing. To verify the control effect, the aerodynamic estimation method of the flapping wing based on quasi-steady theory and the dynamics of an FWMAV in Lagrangian form are applied in the simulation. The proposed control architecture consists of two independent ADRC controllers to stabilize the attitude of the pitch and roll channels. The system disturbance and the coupling effects between channels are estimated by an extended state observer (ESO) and compensated in real time in the control output. The convergence of the ESO and ADRC is proven. Simulation results show that even if the aircraft is in different flight modes, the ADRC controller can track the target trajectory quickly and accurately. Then, to realize automatic landing in a real environment, a simplified two-stage landing trajectory is designed. A landing test is carried out on this basis. The test results show that ADRC can not only stabilize the flight attitude in flapping mode but also obtain a satisfactory control accuracy and convergence speed when the aircraft is in the transition and gliding modes, confirming its usefulness in automatic landing. |
format |
article |
author |
Shaoran Liang Bifeng Song Jianlin Xuan |
author_facet |
Shaoran Liang Bifeng Song Jianlin Xuan |
author_sort |
Shaoran Liang |
title |
Active Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing |
title_short |
Active Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing |
title_full |
Active Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing |
title_fullStr |
Active Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing |
title_full_unstemmed |
Active Disturbance Rejection Attitude Control for a Bird-Like Flapping Wing Micro Air Vehicle During Automatic Landing |
title_sort |
active disturbance rejection attitude control for a bird-like flapping wing micro air vehicle during automatic landing |
publisher |
IEEE |
publishDate |
2020 |
url |
https://doaj.org/article/ba988da0a78b48b3b69f69c5900fe149 |
work_keys_str_mv |
AT shaoranliang activedisturbancerejectionattitudecontrolforabirdlikeflappingwingmicroairvehicleduringautomaticlanding AT bifengsong activedisturbancerejectionattitudecontrolforabirdlikeflappingwingmicroairvehicleduringautomaticlanding AT jianlinxuan activedisturbancerejectionattitudecontrolforabirdlikeflappingwingmicroairvehicleduringautomaticlanding |
_version_ |
1718420689388568576 |