A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.

<h4>Introduction</h4>Circulating cell-free DNA (cf-DNA) is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juulia Jylhävä, Leo-Pekka Lyytikäinen, Mika Kähönen, Nina Hutri-Kähönen, Johannes Kettunen, Jorma Viikari, Olli T Raitakari, Terho Lehtimäki, Mikko Hurme
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ba9d5a5af5dd443b8e8ef0cdec5a09d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ba9d5a5af5dd443b8e8ef0cdec5a09d9
record_format dspace
spelling oai:doaj.org-article:ba9d5a5af5dd443b8e8ef0cdec5a09d92021-11-18T07:22:23ZA genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.1932-620310.1371/journal.pone.0035426https://doaj.org/article/ba9d5a5af5dd443b8e8ef0cdec5a09d92012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22511988/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Introduction</h4>Circulating cell-free DNA (cf-DNA) is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of the inhibition of potentially harmful autoimmune responses. However, the exact molecular mechanism underlying the clearance of circulating cf-DNA is currently unclear.<h4>Methods</h4>To examine the mechanisms controlling serum levels of cf-DNA, we carried out a genome-wide association analysis (GWA) in a cohort of young adults (aged 24-39 years; n = 1841; 1018 women and 823 men) participating in the Cardiovascular Risk in Young Finns Study. Genotyping was performed with a custom-built Illumina Human 670 k BeadChip. The Quant-iT(TM) high sensitivity DNA assay was used to measure cf-DNA directly from serum.<h4>Results</h4>The results revealed that 110 single nucleotide polymorphisms (SNPs) were associated with serum cf-DNA with genome-wide significance (p<5×10(-8)). All of these significant SNPs were localised to chromosome 2q37, near the UDP-glucuronosyltransferase 1 (UGT1) family locus, and the most significant SNPs localised within the UGT1 polypeptide A1 (UGT1A1) gene region.<h4>Conclusion</h4>The UGT1A1 enzyme catalyses the detoxification of several drugs and the turnover of many xenobiotic and endogenous compounds by glucuronidating its substrates. These data indicate that UGT1A1-associated processes are also involved in the regulation of serum cf-DNA concentrations.Juulia JylhäväLeo-Pekka LyytikäinenMika KähönenNina Hutri-KähönenJohannes KettunenJorma ViikariOlli T RaitakariTerho LehtimäkiMikko HurmePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 4, p e35426 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Juulia Jylhävä
Leo-Pekka Lyytikäinen
Mika Kähönen
Nina Hutri-Kähönen
Johannes Kettunen
Jorma Viikari
Olli T Raitakari
Terho Lehtimäki
Mikko Hurme
A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.
description <h4>Introduction</h4>Circulating cell-free DNA (cf-DNA) is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of the inhibition of potentially harmful autoimmune responses. However, the exact molecular mechanism underlying the clearance of circulating cf-DNA is currently unclear.<h4>Methods</h4>To examine the mechanisms controlling serum levels of cf-DNA, we carried out a genome-wide association analysis (GWA) in a cohort of young adults (aged 24-39 years; n = 1841; 1018 women and 823 men) participating in the Cardiovascular Risk in Young Finns Study. Genotyping was performed with a custom-built Illumina Human 670 k BeadChip. The Quant-iT(TM) high sensitivity DNA assay was used to measure cf-DNA directly from serum.<h4>Results</h4>The results revealed that 110 single nucleotide polymorphisms (SNPs) were associated with serum cf-DNA with genome-wide significance (p<5×10(-8)). All of these significant SNPs were localised to chromosome 2q37, near the UDP-glucuronosyltransferase 1 (UGT1) family locus, and the most significant SNPs localised within the UGT1 polypeptide A1 (UGT1A1) gene region.<h4>Conclusion</h4>The UGT1A1 enzyme catalyses the detoxification of several drugs and the turnover of many xenobiotic and endogenous compounds by glucuronidating its substrates. These data indicate that UGT1A1-associated processes are also involved in the regulation of serum cf-DNA concentrations.
format article
author Juulia Jylhävä
Leo-Pekka Lyytikäinen
Mika Kähönen
Nina Hutri-Kähönen
Johannes Kettunen
Jorma Viikari
Olli T Raitakari
Terho Lehtimäki
Mikko Hurme
author_facet Juulia Jylhävä
Leo-Pekka Lyytikäinen
Mika Kähönen
Nina Hutri-Kähönen
Johannes Kettunen
Jorma Viikari
Olli T Raitakari
Terho Lehtimäki
Mikko Hurme
author_sort Juulia Jylhävä
title A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.
title_short A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.
title_full A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.
title_fullStr A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.
title_full_unstemmed A genome-wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study.
title_sort genome-wide association study identifies ugt1a1 as a regulator of serum cell-free dna in young adults: the cardiovascular risk in young finns study.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/ba9d5a5af5dd443b8e8ef0cdec5a09d9
work_keys_str_mv AT juuliajylhava agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT leopekkalyytikainen agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT mikakahonen agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT ninahutrikahonen agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT johanneskettunen agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT jormaviikari agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT ollitraitakari agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT terholehtimaki agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT mikkohurme agenomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT juuliajylhava genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT leopekkalyytikainen genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT mikakahonen genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT ninahutrikahonen genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT johanneskettunen genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT jormaviikari genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT ollitraitakari genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT terholehtimaki genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
AT mikkohurme genomewideassociationstudyidentifiesugt1a1asaregulatorofserumcellfreednainyoungadultsthecardiovascularriskinyoungfinnsstudy
_version_ 1718423559650410496