A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.

<h4>Purpose</h4>Infiltration of activated dendritic cells and inflammatory cells in cornea represents an important marker for defining corneal inflammation. Deep transfer learning has presented a promising potential and is gaining more importance in computer assisted diagnosis. This stud...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fan Xu, Yikun Qin, Wenjing He, Guangyi Huang, Jian Lv, Xinxin Xie, Chunli Diao, Fen Tang, Li Jiang, Rushi Lan, Xiaohui Cheng, Xiaolin Xiao, Siming Zeng, Qi Chen, Ling Cui, Min Li, Ningning Tang
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/baa509686dac43f688c3bf9d7ea6501d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:baa509686dac43f688c3bf9d7ea6501d
record_format dspace
spelling oai:doaj.org-article:baa509686dac43f688c3bf9d7ea6501d2021-12-02T20:11:06ZA deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.1932-620310.1371/journal.pone.0252653https://doaj.org/article/baa509686dac43f688c3bf9d7ea6501d2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252653https://doaj.org/toc/1932-6203<h4>Purpose</h4>Infiltration of activated dendritic cells and inflammatory cells in cornea represents an important marker for defining corneal inflammation. Deep transfer learning has presented a promising potential and is gaining more importance in computer assisted diagnosis. This study aimed to develop deep transfer learning models for automatic detection of activated dendritic cells and inflammatory cells using in vivo confocal microscopy images.<h4>Methods</h4>A total of 3453 images was used to train the models. External validation was performed on an independent test set of 558 images. A ground-truth label was assigned to each image by a panel of cornea specialists. We constructed a deep transfer learning network that consisted of a pre-trained network and an adaptation layer. In this work, five pre-trained networks were considered, namely VGG-16, ResNet-101, Inception V3, Xception, and Inception-ResNet V2. The performance of each transfer network was evaluated by calculating the area under the curve (AUC) of receiver operating characteristic, accuracy, sensitivity, specificity, and G mean.<h4>Results</h4>The best performance was achieved by Inception-ResNet V2 transfer model. In the validation set, the best transfer system achieved an AUC of 0.9646 (P<0.001) in identifying activated dendritic cells (accuracy, 0.9319; sensitivity, 0.8171; specificity, 0.9517; and G mean, 0.8872), and 0.9901 (P<0.001) in identifying inflammatory cells (accuracy, 0.9767; sensitivity, 0.9174; specificity, 0.9931; and G mean, 0.9545).<h4>Conclusions</h4>The deep transfer learning models provide a completely automated analysis of corneal inflammatory cellular components with high accuracy. The implementation of such models would greatly benefit the management of corneal diseases and reduce workloads for ophthalmologists.Fan XuYikun QinWenjing HeGuangyi HuangJian LvXinxin XieChunli DiaoFen TangLi JiangRushi LanXiaohui ChengXiaolin XiaoSiming ZengQi ChenLing CuiMin LiNingning TangPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252653 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Fan Xu
Yikun Qin
Wenjing He
Guangyi Huang
Jian Lv
Xinxin Xie
Chunli Diao
Fen Tang
Li Jiang
Rushi Lan
Xiaohui Cheng
Xiaolin Xiao
Siming Zeng
Qi Chen
Ling Cui
Min Li
Ningning Tang
A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.
description <h4>Purpose</h4>Infiltration of activated dendritic cells and inflammatory cells in cornea represents an important marker for defining corneal inflammation. Deep transfer learning has presented a promising potential and is gaining more importance in computer assisted diagnosis. This study aimed to develop deep transfer learning models for automatic detection of activated dendritic cells and inflammatory cells using in vivo confocal microscopy images.<h4>Methods</h4>A total of 3453 images was used to train the models. External validation was performed on an independent test set of 558 images. A ground-truth label was assigned to each image by a panel of cornea specialists. We constructed a deep transfer learning network that consisted of a pre-trained network and an adaptation layer. In this work, five pre-trained networks were considered, namely VGG-16, ResNet-101, Inception V3, Xception, and Inception-ResNet V2. The performance of each transfer network was evaluated by calculating the area under the curve (AUC) of receiver operating characteristic, accuracy, sensitivity, specificity, and G mean.<h4>Results</h4>The best performance was achieved by Inception-ResNet V2 transfer model. In the validation set, the best transfer system achieved an AUC of 0.9646 (P<0.001) in identifying activated dendritic cells (accuracy, 0.9319; sensitivity, 0.8171; specificity, 0.9517; and G mean, 0.8872), and 0.9901 (P<0.001) in identifying inflammatory cells (accuracy, 0.9767; sensitivity, 0.9174; specificity, 0.9931; and G mean, 0.9545).<h4>Conclusions</h4>The deep transfer learning models provide a completely automated analysis of corneal inflammatory cellular components with high accuracy. The implementation of such models would greatly benefit the management of corneal diseases and reduce workloads for ophthalmologists.
format article
author Fan Xu
Yikun Qin
Wenjing He
Guangyi Huang
Jian Lv
Xinxin Xie
Chunli Diao
Fen Tang
Li Jiang
Rushi Lan
Xiaohui Cheng
Xiaolin Xiao
Siming Zeng
Qi Chen
Ling Cui
Min Li
Ningning Tang
author_facet Fan Xu
Yikun Qin
Wenjing He
Guangyi Huang
Jian Lv
Xinxin Xie
Chunli Diao
Fen Tang
Li Jiang
Rushi Lan
Xiaohui Cheng
Xiaolin Xiao
Siming Zeng
Qi Chen
Ling Cui
Min Li
Ningning Tang
author_sort Fan Xu
title A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.
title_short A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.
title_full A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.
title_fullStr A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.
title_full_unstemmed A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.
title_sort deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/baa509686dac43f688c3bf9d7ea6501d
work_keys_str_mv AT fanxu adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT yikunqin adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT wenjinghe adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT guangyihuang adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT jianlv adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT xinxinxie adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT chunlidiao adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT fentang adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT lijiang adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT rushilan adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT xiaohuicheng adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT xiaolinxiao adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT simingzeng adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT qichen adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT lingcui adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT minli adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT ningningtang adeeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT fanxu deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT yikunqin deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT wenjinghe deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT guangyihuang deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT jianlv deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT xinxinxie deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT chunlidiao deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT fentang deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT lijiang deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT rushilan deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT xiaohuicheng deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT xiaolinxiao deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT simingzeng deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT qichen deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT lingcui deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT minli deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
AT ningningtang deeptransferlearningframeworkfortheautomatedassessmentofcornealinflammationoninvivoconfocalmicroscopyimages
_version_ 1718374969528811520