Fc γ receptor IIIB (FcγRIIIB) polymorphisms are associated with clinical malaria in Ghanaian children.
Plasmodium falciparum malaria kills nearly a million people annually. Over 90% of these deaths occur in children under five years of age in sub-Saharan Africa. A neutrophil mediated mechanism, the antibody dependent respiratory burst (ADRB), was recently shown to correlate with protection from clini...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/baadd38e913a4a89a47adbcd7926eb9d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Plasmodium falciparum malaria kills nearly a million people annually. Over 90% of these deaths occur in children under five years of age in sub-Saharan Africa. A neutrophil mediated mechanism, the antibody dependent respiratory burst (ADRB), was recently shown to correlate with protection from clinical malaria. Human neutrophils constitutively express Fc gamma receptor-FcγRIIA and FcγRIIIB by which they interact with immunoglobulin (Ig) G (IgG)-subclass antibodies. Polymorphisms in exon 4 of FCGR2A and exon 3 of FCGR3B genes encoding FcγRIIA and FcγRIIIB respectively have been described to alter the affinities of both receptors for IgG. Here, associations between specific polymorphisms, encoding FcγRIIA p.H166R and FcγRIIIB-NA1/NA2/SH variants with clinical malaria were investigated in a longitudinal malaria cohort study. FcγRIIA-p.166H/R was genotyped by gene specific polymerase chain reaction followed by allele specific restriction enzyme digestion. FCGR3B-exon 3 was sequenced in 585 children, aged 1 to 12 years living in a malaria endemic region of Ghana. Multivariate logistic regression analysis found no association between FcγRIIA-166H/R polymorphism and clinical malaria. The A-allele of FCGR3B-c.233C>A (rs5030738) was significantly associated with protection from clinical malaria under two out of three genetic models (additive: p=0.0061; recessive: p=0.097; dominant: p=0.0076) of inheritance. The FcγRIIIB-SH allotype (CTGAAA) containing the 233A-allele (in bold) was associated with protection from malaria (p=0.049). The FcγRIIIB-NA2*03 allotype (CTGCGA), a variant of the classical FcγRIIIB-NA2 (CTGCAA) was associated with susceptibility to clinical malaria (p=0.0092). The present study is the first to report an association between a variant of FcγRIIIB-NA2 and susceptibility to clinical malaria and provides justification for further functional characterization of variants of the classical FcγRIIIB allotypes. This would be crucial to the improvement of neutrophil mediated functional assays such as the ADRB assay aimed at assessing the functionality of antibodies induced by candidate malaria vaccines. |
---|