Increased learning and brain long-term potentiation in aged mice lacking DNA polymerase μ.
A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase µ is a novel accessory partner for the non-homologous end-joining DNA repair pa...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2013
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/baadea94e7b84ecfb2e8151ccb7d34e7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase µ is a novel accessory partner for the non-homologous end-joining DNA repair pathway for double-strand breaks, and its deficiency causes reduced DNA repair. Using associative learning and long-term potentiation experiments, we demonstrate that Polµ(-/-) mice, however, maintain the ability to learn at ages when wild-type mice do not. Expression and biochemical analyses suggest that brain aging is delayed in Polµ(-/-) mice, being associated with a reduced error-prone DNA oxidative repair activity and a more efficient mitochondrial function. This is the first example in which the genetic ablation of a DNA-repair function results in a substantially better maintenance of learning abilities, together with fewer signs of brain aging, in old mice. |
---|