Prediction of Dominant Ocean Parameters for Sustainable Marine Environment
Prediction of ocean parameters is the rising interest in ocean-related fields to perceive variations in climatic conditions. Most of the existing methods reveal that predictions involve a single parameter, namely Sea Surface Temperature (SST). This paper proposed a deep learning technique of Multi-L...
Enregistré dans:
Auteurs principaux: | D. Menaka, Sabitha Gauni |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bac21c15196d4a0192c7533a328b11b6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hybrid Deep Spatio-Temporal Models for Traffic Flow Prediction on Holidays and Under Adverse Weather
par: Wensong Zhang, et autres
Publié: (2021) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
par: Diogo F. Costa Silva, et autres
Publié: (2021) -
A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning
par: Xiaoming Xie, et autres
Publié: (2021) -
Wind Speed Prediction Using Hybrid 1D CNN and BLSTM Network
par: Abdulmajid Lawal, et autres
Publié: (2021) -
A Haze Prediction Model in Chengdu Based on LSTM
par: Xinyi Wu, et autres
Publié: (2021)