Optical Recognition of Handwritten Logic Formulas Using Neural Networks
In this paper, we present a handwritten character recognition (HCR) system that aims to recognize first-order logic handwritten formulas and create editable text files of the recognized formulas. Dense feedforward neural networks (NNs) are utilized, and their performance is examined under various tr...
Guardado en:
Autores principales: | Vaios Ampelakiotis, Isidoros Perikos, Ioannis Hatzilygeroudis, George Tsihrintzis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bac261d9ab684d67a521b64faad04007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Image Characterization of Psoriasis Lesions
por: Javier Martínez-Torres, et al.
Publicado: (2021) -
TRANSFER LEARNING BASED OFFLINE YORÙBÁ HANDWRITTEN CHARACTER RECOGNITION SYSTEM
por: OLUWASHINA OYENIRAN, et al.
Publicado: (2021) -
K-Nearest Neighbor for Recognize Handwritten Arabic Character
por: Muhammad Athoillah
Publicado: (2019) -
3D Model Registration-Based Batch Wafer-ID Recognition Algorithm
por: Fang Cao, et al.
Publicado: (2021) -
Study on character recognition algorithm for end face of bundled special steel bars
por: Fuxiang ZHANG, et al.
Publicado: (2021)