Learned Hyperspectral Compression Using a Student’s T Hyperprior
Hyperspectral compression is one of the most common techniques in hyperspectral image processing. Most recent learned image compression methods have exhibited excellent rate-distortion performance for natural images, but they have not been fully explored for hyperspectral compression tasks. In this...
Guardado en:
Autores principales: | Yuanyuan Guo, Yanwen Chong, Yun Ding, Shaoming Pan, Xiaolin Gu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bad49450caac49589fd4181c8fbd0e72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Learned Image Compression With Separate Hyperprior Decoders
por: Zhao Zan, et al.
Publicado: (2021) -
Prediction of Compression Index of Marine clay Using Artificial Neural Network and Multilinear Regression Models
por: Ramachandiran Saisubramanian, et al.
Publicado: (2021) -
Application of the Monte Carlo method to estimate the uncertainty in the compressive strength test of high-strength concrete modelled with a multilayer perceptron
por: Moromi-Nakata,Isabel, et al.
Publicado: (2018) -
A novel hyperspectral compressive sensing framework of plant leaves based on multiple arbitrary-shape regions of interest
por: Yuewei Jia, et al.
Publicado: (2021) -
The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete
por: Atefehossadat Khademi, et al.
Publicado: (2021)