Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils
Quantitative estimations of sources and spatial distribution of soil heavy metals (HMs) is essential for strategizing policies for soil protection and remediation. As a special soil ecosystem, the intensified human activities on coastal reclaimed lands generally causes soil contamination with HMs. T...
Enregistré dans:
Auteurs principaux: | Huan Zhang, Aijing Yin, Xiaohui Yang, Manman Fan, Shuangshuang Shao, Jingtao Wu, Pengbao Wu, Ming Zhang, Chao Gao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bad4a150f7874042954c5138c598f811 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China
par: Lei Chai, et autres
Publié: (2021) -
Source apportionment of polycyclic aromatic hydrocarbons and black carbon at the western coastal areas of the Yellow Sea based on isotopic signatures
par: Yipeng Wang, et autres
Publié: (2021) -
Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China
par: Yao Gu, et autres
Publié: (2022) -
Source Apportionment of Fine Organic Particulate Matter (PM<sub>2.5</sub>) in Central Addis Ababa, Ethiopia
par: Worku Tefera, et autres
Publié: (2021) -
Impact of the Assimilation of Multi-Platform Observations on Heavy Rainfall Forecasts in Kong-Chi Basin, Thailand
par: Thippawan Thodsan, et autres
Publié: (2021)