Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils
Quantitative estimations of sources and spatial distribution of soil heavy metals (HMs) is essential for strategizing policies for soil protection and remediation. As a special soil ecosystem, the intensified human activities on coastal reclaimed lands generally causes soil contamination with HMs. T...
Guardado en:
Autores principales: | Huan Zhang, Aijing Yin, Xiaohui Yang, Manman Fan, Shuangshuang Shao, Jingtao Wu, Pengbao Wu, Ming Zhang, Chao Gao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bad4a150f7874042954c5138c598f811 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China
por: Lei Chai, et al.
Publicado: (2021) -
Source apportionment of polycyclic aromatic hydrocarbons and black carbon at the western coastal areas of the Yellow Sea based on isotopic signatures
por: Yipeng Wang, et al.
Publicado: (2021) -
Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China
por: Yao Gu, et al.
Publicado: (2022) -
Source Apportionment of Fine Organic Particulate Matter (PM<sub>2.5</sub>) in Central Addis Ababa, Ethiopia
por: Worku Tefera, et al.
Publicado: (2021) -
Impact of the Assimilation of Multi-Platform Observations on Heavy Rainfall Forecasts in Kong-Chi Basin, Thailand
por: Thippawan Thodsan, et al.
Publicado: (2021)