Sliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures
The aim of the study was to investigate effect of Ti/TiB<sub>2</sub> composite composition and manufacturing technology parameters on the tribological behaviour of AlCrN coating-composite system. The AlCrN coating was deposited by PVD (Physical Vapour Deposition) method. The composites w...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bad80ec754284eef974850d56c776f09 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bad80ec754284eef974850d56c776f09 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bad80ec754284eef974850d56c776f092021-11-25T18:13:29ZSliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures10.3390/ma142267711996-1944https://doaj.org/article/bad80ec754284eef974850d56c776f092021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/6771https://doaj.org/toc/1996-1944The aim of the study was to investigate effect of Ti/TiB<sub>2</sub> composite composition and manufacturing technology parameters on the tribological behaviour of AlCrN coating-composite system. The AlCrN coating was deposited by PVD (Physical Vapour Deposition) method. The composites were manufactured by spark plasma sintering (SPS) from three variants of powders mixtures: Ti with TiB<sub>2</sub>, Ti6Al4V with TiB<sub>2</sub> as well as Ti with B, using (five) different sintering temperatures. For each of the developed coating-composite systems, the wear resistance was evaluated using ball-on-disc SRV tester, at six temperatures (from room temperature up to 900 °C). The results confirmed that high-temperature wear resistance of the coating–substrate combination depends on Ti/TiB<sub>2</sub> composite composition and manufacturing technology parameters. In the case of uncoated composite, two processes manage the wear at high temperatures: cracking propagation and surface oxidation. The presence of AlCrN coating on the composite surface protects the surface against deep cracking and surface oxidation. The composites of Group I, sintered at 1250 °C from a mixture of pure Ti and TiB<sub>2</sub> (50/50 wt.% ratio) as well as Group III, sintered at 1350 °C from a mixture of pure Ti and B allow the achievement of a satisfactory surface quality, a high adhesion of the PVD coating and moderate wear at high temperatures. However, the composite made of pure Ti and B seems to be a better solution for temperatures exceeding 600 °C.Remigiusz MichalczewskiMarek KalbarczykZbigniew SłomkaEdyta Osuch-SłomkaMaciej ŁuszczLe LiuMaksim AntonovIrina HussainovaMDPI AGarticletribologysurface engineeringcoatingTiB<sub>2</sub>/Ti compositesSPSwearTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6771, p 6771 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
tribology surface engineering coating TiB<sub>2</sub>/Ti composites SPS wear Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
tribology surface engineering coating TiB<sub>2</sub>/Ti composites SPS wear Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Remigiusz Michalczewski Marek Kalbarczyk Zbigniew Słomka Edyta Osuch-Słomka Maciej Łuszcz Le Liu Maksim Antonov Irina Hussainova Sliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures |
description |
The aim of the study was to investigate effect of Ti/TiB<sub>2</sub> composite composition and manufacturing technology parameters on the tribological behaviour of AlCrN coating-composite system. The AlCrN coating was deposited by PVD (Physical Vapour Deposition) method. The composites were manufactured by spark plasma sintering (SPS) from three variants of powders mixtures: Ti with TiB<sub>2</sub>, Ti6Al4V with TiB<sub>2</sub> as well as Ti with B, using (five) different sintering temperatures. For each of the developed coating-composite systems, the wear resistance was evaluated using ball-on-disc SRV tester, at six temperatures (from room temperature up to 900 °C). The results confirmed that high-temperature wear resistance of the coating–substrate combination depends on Ti/TiB<sub>2</sub> composite composition and manufacturing technology parameters. In the case of uncoated composite, two processes manage the wear at high temperatures: cracking propagation and surface oxidation. The presence of AlCrN coating on the composite surface protects the surface against deep cracking and surface oxidation. The composites of Group I, sintered at 1250 °C from a mixture of pure Ti and TiB<sub>2</sub> (50/50 wt.% ratio) as well as Group III, sintered at 1350 °C from a mixture of pure Ti and B allow the achievement of a satisfactory surface quality, a high adhesion of the PVD coating and moderate wear at high temperatures. However, the composite made of pure Ti and B seems to be a better solution for temperatures exceeding 600 °C. |
format |
article |
author |
Remigiusz Michalczewski Marek Kalbarczyk Zbigniew Słomka Edyta Osuch-Słomka Maciej Łuszcz Le Liu Maksim Antonov Irina Hussainova |
author_facet |
Remigiusz Michalczewski Marek Kalbarczyk Zbigniew Słomka Edyta Osuch-Słomka Maciej Łuszcz Le Liu Maksim Antonov Irina Hussainova |
author_sort |
Remigiusz Michalczewski |
title |
Sliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures |
title_short |
Sliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures |
title_full |
Sliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures |
title_fullStr |
Sliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures |
title_full_unstemmed |
Sliding Wear Performance of AlCrN Coating on TiB<sub>2</sub>/Ti Composites at High Temperatures |
title_sort |
sliding wear performance of alcrn coating on tib<sub>2</sub>/ti composites at high temperatures |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/bad80ec754284eef974850d56c776f09 |
work_keys_str_mv |
AT remigiuszmichalczewski slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures AT marekkalbarczyk slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures AT zbigniewsłomka slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures AT edytaosuchsłomka slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures AT maciejłuszcz slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures AT leliu slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures AT maksimantonov slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures AT irinahussainova slidingwearperformanceofalcrncoatingontibsub2subticompositesathightemperatures |
_version_ |
1718411461700616192 |