Simplivariate models: uncovering the underlying biology in functional genomics data.
One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a severe drawback: they do not always generate simp...
Guardado en:
Autores principales: | Edoardo Saccenti, Johan A Westerhuis, Age K Smilde, Mariët J van der Werf, Jos A Hageman, Margriet M W B Hendriks |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb15782ee0bd4a54b84c243b5cfc4c75 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data.
por: Torfinn S Madssen, et al.
Publicado: (2021) -
Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data
por: Torfinn S. Madssen, et al.
Publicado: (2021) -
Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions
por: Anushila Chatterjee, et al.
Publicado: (2020) -
Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA
por: Sylvia Kalli, et al.
Publicado: (2021) -
Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology.
por: Ana M Rojas, et al.
Publicado: (2012)