Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes

Huichuan Duan,1,* Bei Feng,2,* Xiangkai Guo,3 Jiaming Wang,1 Li Zhao,1 Guangdong Zhou,1 Wei Liu,1 Yilin Cao,1 Wen Jie Zhang1 1Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Duan H, Feng B, Guo X, Wang J, Zhao L, Zhou G, Liu W, Cao Y, Zhang WJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://doaj.org/article/bb1f2676f1fd42afb984f1ccd611edba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bb1f2676f1fd42afb984f1ccd611edba
record_format dspace
spelling oai:doaj.org-article:bb1f2676f1fd42afb984f1ccd611edba2021-12-02T02:49:07ZEngineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes1176-91141178-2013https://doaj.org/article/bb1f2676f1fd42afb984f1ccd611edba2013-06-01T00:00:00Zhttp://www.dovepress.com/engineering-of-epidermis-skin-grafts-using-electrospun-nanofibrous-gel-a13257https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Huichuan Duan,1,* Bei Feng,2,* Xiangkai Guo,3 Jiaming Wang,1 Li Zhao,1 Guangdong Zhou,1 Wei Liu,1 Yilin Cao,1 Wen Jie Zhang1 1Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Shanghai, People’s Republic of China; 2Department of Cardiothoracic Surgery, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 3School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji Nan, Shan Dong, People’s Republic of China *These authors contributed equally to this work Abstract: Skin engineering provides a new strategy for treating a wide variety of skin defects. In particular, electrospun nanofibrous membranes have been used as carriers for epidermis engineering. The aim of this study was to investigate the feasibility of a modified gelatin and polycaprolactone (GT/PCL) electrospun membrane for epidermis engineering. The biocompatibility of the membranes was evaluated by seeding HaCaT cells (human keratinocyte cell line) on the membrane and the mechanical properties of the membranes were determined with and without cells after culture. A cell proliferation assay showing that HaCaT cells attached and proliferated well on the membranes demonstrated that the membranes possess good biocompatibility. Mechanical tests showed that the membranes are strong enough to be handled during transplantation. Further in vivo transplantation studies revealed that epidermises engineered with GT/PCL membranes were able to repair skin defects in the nude mouse. These results demonstrate that GT/PCL electrospun membranes could be suitable scaffolds for skin engineering. Keywords: epidermis engineering, electrospun nanofibrous membrane, gelatin, polycaprolactoneDuan HFeng BGuo XWang JZhao LZhou GLiu WCao YZhang WJDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 2077-2084 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Duan H
Feng B
Guo X
Wang J
Zhao L
Zhou G
Liu W
Cao Y
Zhang WJ
Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes
description Huichuan Duan,1,* Bei Feng,2,* Xiangkai Guo,3 Jiaming Wang,1 Li Zhao,1 Guangdong Zhou,1 Wei Liu,1 Yilin Cao,1 Wen Jie Zhang1 1Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Shanghai, People’s Republic of China; 2Department of Cardiothoracic Surgery, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 3School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji Nan, Shan Dong, People’s Republic of China *These authors contributed equally to this work Abstract: Skin engineering provides a new strategy for treating a wide variety of skin defects. In particular, electrospun nanofibrous membranes have been used as carriers for epidermis engineering. The aim of this study was to investigate the feasibility of a modified gelatin and polycaprolactone (GT/PCL) electrospun membrane for epidermis engineering. The biocompatibility of the membranes was evaluated by seeding HaCaT cells (human keratinocyte cell line) on the membrane and the mechanical properties of the membranes were determined with and without cells after culture. A cell proliferation assay showing that HaCaT cells attached and proliferated well on the membranes demonstrated that the membranes possess good biocompatibility. Mechanical tests showed that the membranes are strong enough to be handled during transplantation. Further in vivo transplantation studies revealed that epidermises engineered with GT/PCL membranes were able to repair skin defects in the nude mouse. These results demonstrate that GT/PCL electrospun membranes could be suitable scaffolds for skin engineering. Keywords: epidermis engineering, electrospun nanofibrous membrane, gelatin, polycaprolactone
format article
author Duan H
Feng B
Guo X
Wang J
Zhao L
Zhou G
Liu W
Cao Y
Zhang WJ
author_facet Duan H
Feng B
Guo X
Wang J
Zhao L
Zhou G
Liu W
Cao Y
Zhang WJ
author_sort Duan H
title Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes
title_short Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes
title_full Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes
title_fullStr Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes
title_full_unstemmed Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes
title_sort engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes
publisher Dove Medical Press
publishDate 2013
url https://doaj.org/article/bb1f2676f1fd42afb984f1ccd611edba
work_keys_str_mv AT duanh engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT fengb engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT guox engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT wangj engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT zhaol engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT zhoug engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT liuw engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT caoy engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
AT zhangwj engineeringofepidermisskingraftsusingelectrospunnanofibrousgelatinpolycaprolactonemembranes
_version_ 1718402123211735040