Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses

Abstract Bioactive glasses convert to a biomimetic apatite when in contact with physiological solutions; however, the number and type of phases precipitating depends on glass composition and reactivity. This process is typically followed by X-ray diffraction and infrared spectroscopy. Here, we visua...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Altair T. Contreras Jaimes, Gloria Kirste, Araceli de Pablos-Martín, Susanne Selle, Juliana Martins de Souza e Silva, Jonathan Massera, Natalia Karpukhina, Robert G. Hill, Delia S. Brauer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bb1fe4d696894eb6a011abd7df996374
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bb1fe4d696894eb6a011abd7df996374
record_format dspace
spelling oai:doaj.org-article:bb1fe4d696894eb6a011abd7df9963742021-12-02T17:37:34ZNano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses10.1038/s41598-021-98863-32045-2322https://doaj.org/article/bb1fe4d696894eb6a011abd7df9963742021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98863-3https://doaj.org/toc/2045-2322Abstract Bioactive glasses convert to a biomimetic apatite when in contact with physiological solutions; however, the number and type of phases precipitating depends on glass composition and reactivity. This process is typically followed by X-ray diffraction and infrared spectroscopy. Here, we visualise surface mineralisation in a series of sodium-free bioactive glasses, using transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDXS) and X-ray nano-computed tomography (nano-CT). In the glasses, the phosphate content was increased while adding stoichiometric amounts of calcium to maintain phosphate in an orthophosphate environment in the glass. Calcium fluoride was added to keep the melting temperature low. TEM brought to light the presence of phosphate clustering and nearly crystalline calcium fluoride environments in the glasses. A combination of analytical methods, including solid-state NMR, shows how with increasing phosphate content in the glass, precipitation of calcium fluoride during immersion is superseded by fluorapatite precipitation. Nano-CT gives insight into bioactive glass particle morphology after immersion, while TEM illustrates how compositional changes in the glass affect microstructure at a sub-micron to nanometre-level.Altair T. Contreras JaimesGloria KirsteAraceli de Pablos-MartínSusanne SelleJuliana Martins de Souza e SilvaJonathan MasseraNatalia KarpukhinaRobert G. HillDelia S. BrauerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Altair T. Contreras Jaimes
Gloria Kirste
Araceli de Pablos-Martín
Susanne Selle
Juliana Martins de Souza e Silva
Jonathan Massera
Natalia Karpukhina
Robert G. Hill
Delia S. Brauer
Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
description Abstract Bioactive glasses convert to a biomimetic apatite when in contact with physiological solutions; however, the number and type of phases precipitating depends on glass composition and reactivity. This process is typically followed by X-ray diffraction and infrared spectroscopy. Here, we visualise surface mineralisation in a series of sodium-free bioactive glasses, using transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDXS) and X-ray nano-computed tomography (nano-CT). In the glasses, the phosphate content was increased while adding stoichiometric amounts of calcium to maintain phosphate in an orthophosphate environment in the glass. Calcium fluoride was added to keep the melting temperature low. TEM brought to light the presence of phosphate clustering and nearly crystalline calcium fluoride environments in the glasses. A combination of analytical methods, including solid-state NMR, shows how with increasing phosphate content in the glass, precipitation of calcium fluoride during immersion is superseded by fluorapatite precipitation. Nano-CT gives insight into bioactive glass particle morphology after immersion, while TEM illustrates how compositional changes in the glass affect microstructure at a sub-micron to nanometre-level.
format article
author Altair T. Contreras Jaimes
Gloria Kirste
Araceli de Pablos-Martín
Susanne Selle
Juliana Martins de Souza e Silva
Jonathan Massera
Natalia Karpukhina
Robert G. Hill
Delia S. Brauer
author_facet Altair T. Contreras Jaimes
Gloria Kirste
Araceli de Pablos-Martín
Susanne Selle
Juliana Martins de Souza e Silva
Jonathan Massera
Natalia Karpukhina
Robert G. Hill
Delia S. Brauer
author_sort Altair T. Contreras Jaimes
title Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
title_short Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
title_full Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
title_fullStr Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
title_full_unstemmed Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
title_sort nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/bb1fe4d696894eb6a011abd7df996374
work_keys_str_mv AT altairtcontrerasjaimes nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT gloriakirste nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT aracelidepablosmartin nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT susanneselle nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT julianamartinsdesouzaesilva nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT jonathanmassera nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT nataliakarpukhina nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT robertghill nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
AT deliasbrauer nanoimagingconfirmsimprovedapatiteprecipitationforhighphosphatesilicateratiobioactiveglasses
_version_ 1718379906247688192