Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15
ABSTRACT Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gond...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb2321ddd215458e9dc1b4d5617f9a66 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bb2321ddd215458e9dc1b4d5617f9a66 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bb2321ddd215458e9dc1b4d5617f9a662021-11-15T15:43:09ZHuman Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA1510.1128/mBio.00255-132150-7511https://doaj.org/article/bb2321ddd215458e9dc1b4d5617f9a662013-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00255-13https://doaj.org/toc/2150-7511ABSTRACT Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. IMPORTANCE Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a “master regulator” of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.Lanny GovAlborz KarimzadehNorikiyo UenoMelissa B. LodoenAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 4, Iss 4 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Lanny Gov Alborz Karimzadeh Norikiyo Ueno Melissa B. Lodoen Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15 |
description |
ABSTRACT Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. IMPORTANCE Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a “master regulator” of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body. |
format |
article |
author |
Lanny Gov Alborz Karimzadeh Norikiyo Ueno Melissa B. Lodoen |
author_facet |
Lanny Gov Alborz Karimzadeh Norikiyo Ueno Melissa B. Lodoen |
author_sort |
Lanny Gov |
title |
Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15 |
title_short |
Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15 |
title_full |
Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15 |
title_fullStr |
Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15 |
title_full_unstemmed |
Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15 |
title_sort |
human innate immunity to <named-content content-type="genus-species">toxoplasma gondii</named-content> is mediated by host caspase-1 and asc and parasite gra15 |
publisher |
American Society for Microbiology |
publishDate |
2013 |
url |
https://doaj.org/article/bb2321ddd215458e9dc1b4d5617f9a66 |
work_keys_str_mv |
AT lannygov humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15 AT alborzkarimzadeh humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15 AT norikiyoueno humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15 AT melissablodoen humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15 |
_version_ |
1718427607893016576 |