Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15

ABSTRACT   Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gond...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lanny Gov, Alborz Karimzadeh, Norikiyo Ueno, Melissa B. Lodoen
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2013
Materias:
Acceso en línea:https://doaj.org/article/bb2321ddd215458e9dc1b4d5617f9a66
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bb2321ddd215458e9dc1b4d5617f9a66
record_format dspace
spelling oai:doaj.org-article:bb2321ddd215458e9dc1b4d5617f9a662021-11-15T15:43:09ZHuman Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA1510.1128/mBio.00255-132150-7511https://doaj.org/article/bb2321ddd215458e9dc1b4d5617f9a662013-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00255-13https://doaj.org/toc/2150-7511ABSTRACT   Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. IMPORTANCE Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a “master regulator” of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.Lanny GovAlborz KarimzadehNorikiyo UenoMelissa B. LodoenAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 4, Iss 4 (2013)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Lanny Gov
Alborz Karimzadeh
Norikiyo Ueno
Melissa B. Lodoen
Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15
description ABSTRACT   Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. IMPORTANCE Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a “master regulator” of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.
format article
author Lanny Gov
Alborz Karimzadeh
Norikiyo Ueno
Melissa B. Lodoen
author_facet Lanny Gov
Alborz Karimzadeh
Norikiyo Ueno
Melissa B. Lodoen
author_sort Lanny Gov
title Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15
title_short Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15
title_full Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15
title_fullStr Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15
title_full_unstemmed Human Innate Immunity to <named-content content-type="genus-species">Toxoplasma gondii</named-content> Is Mediated by Host Caspase-1 and ASC and Parasite GRA15
title_sort human innate immunity to <named-content content-type="genus-species">toxoplasma gondii</named-content> is mediated by host caspase-1 and asc and parasite gra15
publisher American Society for Microbiology
publishDate 2013
url https://doaj.org/article/bb2321ddd215458e9dc1b4d5617f9a66
work_keys_str_mv AT lannygov humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15
AT alborzkarimzadeh humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15
AT norikiyoueno humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15
AT melissablodoen humaninnateimmunitytonamedcontentcontenttypegenusspeciestoxoplasmagondiinamedcontentismediatedbyhostcaspase1andascandparasitegra15
_version_ 1718427607893016576