Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
Abstract Large-scale crop yield estimation is, in part, made possible due to the availability of remote sensing data allowing for the continuous monitoring of crops throughout their growth cycle. Having this information allows stakeholders the ability to make real-time decisions to maximize yield po...
Guardado en:
Autores principales: | Saeed Khaki, Hieu Pham, Lizhi Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb39e63a6f074bcbb30adf1403b105e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Methodology for prediction of corn yield using remote
sensing satellite data in Central Mexico
por: Jesús Soria Ruiz, et al.
Publicado: (2004) -
Genomic prediction modeling of soybean biomass using UAV‐based remote sensing and longitudinal model parameters
por: Yusuke Toda, et al.
Publicado: (2021) -
Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data
por: Paulo Eduardo Teodoro, et al.
Publicado: (2021) -
Yield estimation of the 2020 Beirut explosion using open access waveform and remote sensing data
por: Christoph Pilger, et al.
Publicado: (2021) -
Maladaptation of U.S. corn and soybeans to a changing climate
por: Chengzheng Yu, et al.
Publicado: (2021)