Combining predictive coding and neural oscillations enables online syllable recognition in natural speech

The authors present a model to parse and recognise syllables on-line in natural speech sentences that combine predictive coding and neural oscillations. They use simulations from different versions of the model to establish the importance of both theta-gamma coupling and the reset of accumulated evi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sevada Hovsepyan, Itsaso Olasagasti, Anne-Lise Giraud
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/bb4efecc87414a518c7fadf28ade739e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bb4efecc87414a518c7fadf28ade739e
record_format dspace
spelling oai:doaj.org-article:bb4efecc87414a518c7fadf28ade739e2021-12-02T16:04:25ZCombining predictive coding and neural oscillations enables online syllable recognition in natural speech10.1038/s41467-020-16956-52041-1723https://doaj.org/article/bb4efecc87414a518c7fadf28ade739e2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16956-5https://doaj.org/toc/2041-1723The authors present a model to parse and recognise syllables on-line in natural speech sentences that combine predictive coding and neural oscillations. They use simulations from different versions of the model to establish the importance of both theta-gamma coupling and the reset of accumulated evidence in continuous speech processing.Sevada HovsepyanItsaso OlasagastiAnne-Lise GiraudNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sevada Hovsepyan
Itsaso Olasagasti
Anne-Lise Giraud
Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
description The authors present a model to parse and recognise syllables on-line in natural speech sentences that combine predictive coding and neural oscillations. They use simulations from different versions of the model to establish the importance of both theta-gamma coupling and the reset of accumulated evidence in continuous speech processing.
format article
author Sevada Hovsepyan
Itsaso Olasagasti
Anne-Lise Giraud
author_facet Sevada Hovsepyan
Itsaso Olasagasti
Anne-Lise Giraud
author_sort Sevada Hovsepyan
title Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
title_short Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
title_full Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
title_fullStr Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
title_full_unstemmed Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
title_sort combining predictive coding and neural oscillations enables online syllable recognition in natural speech
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/bb4efecc87414a518c7fadf28ade739e
work_keys_str_mv AT sevadahovsepyan combiningpredictivecodingandneuraloscillationsenablesonlinesyllablerecognitioninnaturalspeech
AT itsasoolasagasti combiningpredictivecodingandneuraloscillationsenablesonlinesyllablerecognitioninnaturalspeech
AT annelisegiraud combiningpredictivecodingandneuraloscillationsenablesonlinesyllablerecognitioninnaturalspeech
_version_ 1718385229582827520