Combining predictive coding and neural oscillations enables online syllable recognition in natural speech
The authors present a model to parse and recognise syllables on-line in natural speech sentences that combine predictive coding and neural oscillations. They use simulations from different versions of the model to establish the importance of both theta-gamma coupling and the reset of accumulated evi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb4efecc87414a518c7fadf28ade739e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bb4efecc87414a518c7fadf28ade739e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bb4efecc87414a518c7fadf28ade739e2021-12-02T16:04:25ZCombining predictive coding and neural oscillations enables online syllable recognition in natural speech10.1038/s41467-020-16956-52041-1723https://doaj.org/article/bb4efecc87414a518c7fadf28ade739e2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16956-5https://doaj.org/toc/2041-1723The authors present a model to parse and recognise syllables on-line in natural speech sentences that combine predictive coding and neural oscillations. They use simulations from different versions of the model to establish the importance of both theta-gamma coupling and the reset of accumulated evidence in continuous speech processing.Sevada HovsepyanItsaso OlasagastiAnne-Lise GiraudNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sevada Hovsepyan Itsaso Olasagasti Anne-Lise Giraud Combining predictive coding and neural oscillations enables online syllable recognition in natural speech |
description |
The authors present a model to parse and recognise syllables on-line in natural speech sentences that combine predictive coding and neural oscillations. They use simulations from different versions of the model to establish the importance of both theta-gamma coupling and the reset of accumulated evidence in continuous speech processing. |
format |
article |
author |
Sevada Hovsepyan Itsaso Olasagasti Anne-Lise Giraud |
author_facet |
Sevada Hovsepyan Itsaso Olasagasti Anne-Lise Giraud |
author_sort |
Sevada Hovsepyan |
title |
Combining predictive coding and neural oscillations enables online syllable recognition in natural speech |
title_short |
Combining predictive coding and neural oscillations enables online syllable recognition in natural speech |
title_full |
Combining predictive coding and neural oscillations enables online syllable recognition in natural speech |
title_fullStr |
Combining predictive coding and neural oscillations enables online syllable recognition in natural speech |
title_full_unstemmed |
Combining predictive coding and neural oscillations enables online syllable recognition in natural speech |
title_sort |
combining predictive coding and neural oscillations enables online syllable recognition in natural speech |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/bb4efecc87414a518c7fadf28ade739e |
work_keys_str_mv |
AT sevadahovsepyan combiningpredictivecodingandneuraloscillationsenablesonlinesyllablerecognitioninnaturalspeech AT itsasoolasagasti combiningpredictivecodingandneuraloscillationsenablesonlinesyllablerecognitioninnaturalspeech AT annelisegiraud combiningpredictivecodingandneuraloscillationsenablesonlinesyllablerecognitioninnaturalspeech |
_version_ |
1718385229582827520 |