The ethanol extract of Garcinia subelliptica Merr. induces autophagy
Abstract Background Garcinia subelliptica Merr. is a multipurpose coastal tree, the potential medicinal effects of which have been studied, including cancer suppression. Here, we present evidence that the ethanol extract of G. subelliptica Merr. (eGSM) induces autophagy in human lung adenocarcinoma...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb60bcbd1c544b5ca84e4ebbc97ba246 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background Garcinia subelliptica Merr. is a multipurpose coastal tree, the potential medicinal effects of which have been studied, including cancer suppression. Here, we present evidence that the ethanol extract of G. subelliptica Merr. (eGSM) induces autophagy in human lung adenocarcinoma cells. Methods Two different human lung adenocarcinoma cell lines, A549 and SNU2292, were treated with varying amounts of eGSM. Cytotoxicity elicited by eGSM was assessed by MTT assay and PARP degradation. Autophagy in A549 and SNU2292 was determined by western blotting for AMPK, mTOR, ULK1, and LC3. Genetic deletion of AMPKα in HEK293 cells was carried out by CRISPR. Results eGSM elicited cytotoxicity, but not apoptosis, in A549 and SNU2292 cells. eGSM increased LC3-II production in both A549 and, more extensively, SNU2292, suggesting that eGSM induces autophagy. In A549, eGSM activated AMPK, an essential autophagy activator, but not suppressed mTOR, an autophagy blocker, suggesting that eGSM induces autophagy by primarily activating the AMPK pathway in A549. By contrast, eGSM suppressed mTOR activity without activating AMPK in SNU2292, suggesting that eGSM induces autophagy by mainly suppressing mTOR in SNU2292. In HEK293 cells lacking AMPKα expression, eGSM increased LC3-II production, confirming that the autophagy induced by eGSM can occur without the AMPK pathway. Conclusion Our findings suggest that eGSM induces autophagy by activating AMPK or suppressing mTOR pathways, depending on cell types. |
---|