Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge
ABSTRACT Sulfur is an important element in sustaining microbial communities present in hydrothermal vents. Sulfur oxidation has been extensively studied due to its importance in chemosynthetic pathways in hydrothermal fields; however, less is known about sulfate reduction. Here, the metagenomes of h...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb66e139a302409aba4130addbe0ea48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bb66e139a302409aba4130addbe0ea48 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bb66e139a302409aba4130addbe0ea482021-11-15T15:45:10ZMicrobial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge10.1128/mBio.00980-132150-7511https://doaj.org/article/bb66e139a302409aba4130addbe0ea482014-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00980-13https://doaj.org/toc/2150-7511ABSTRACT Sulfur is an important element in sustaining microbial communities present in hydrothermal vents. Sulfur oxidation has been extensively studied due to its importance in chemosynthetic pathways in hydrothermal fields; however, less is known about sulfate reduction. Here, the metagenomes of hydrothermal chimneys located on the ultraslow-spreading Southwest Indian Ridge (SWIR) were pyrosequenced to elucidate the associated microbial sulfur cycle. A taxonomic summary of known genes revealed a few dominant bacteria that participated in the microbial sulfur cycle, particularly sulfate-reducing Deltaproteobacteria. The metagenomes studied contained highly abundant genes related to sulfur oxidation and reduction. Several carbon metabolic pathways, in particular the Calvin-Benson-Bassham pathway and the reductive tricarboxylic acid cycles for CO2 fixation, were identified in sulfur-oxidizing autotrophic bacteria. In contrast, highly abundant genes related to the oxidation of short-chain alkanes were grouped with sulfate-reducing bacteria, suggesting an important role for short-chain alkanes in the sulfur cycle. Furthermore, sulfur-oxidizing bacteria were associated with enrichment for genes involved in the denitrification pathway, while sulfate-reducing bacteria displayed enrichment for genes responsible for hydrogen utilization. In conclusion, this study provides insights regarding major microbial metabolic activities that are driven by the sulfur cycle in low-temperature hydrothermal chimneys present on an ultraslow midocean ridge. IMPORTANCE There have been limited studies on chimney sulfides located at ultraslow-spreading ridges. The analysis of metagenomes of hydrothermal chimneys on the ultraslow-spreading Southwest Indian Ridge suggests the presence of a microbial sulfur cycle. The sulfur cycle should be centralized within a microbial community that displays enrichment for sulfur metabolism-related genes. The present study elucidated a significant role of the microbial sulfur cycle in sustaining an entire microbial community in low-temperature hydrothermal chimneys on an ultraslow spreading midocean ridge, which has characteristics distinct from those of other types of hydrothermal fields.Huiluo CaoYong WangOn On LeeXiang ZengZongze ShaoPei-Yuan QianAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 5, Iss 1 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Huiluo Cao Yong Wang On On Lee Xiang Zeng Zongze Shao Pei-Yuan Qian Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge |
description |
ABSTRACT Sulfur is an important element in sustaining microbial communities present in hydrothermal vents. Sulfur oxidation has been extensively studied due to its importance in chemosynthetic pathways in hydrothermal fields; however, less is known about sulfate reduction. Here, the metagenomes of hydrothermal chimneys located on the ultraslow-spreading Southwest Indian Ridge (SWIR) were pyrosequenced to elucidate the associated microbial sulfur cycle. A taxonomic summary of known genes revealed a few dominant bacteria that participated in the microbial sulfur cycle, particularly sulfate-reducing Deltaproteobacteria. The metagenomes studied contained highly abundant genes related to sulfur oxidation and reduction. Several carbon metabolic pathways, in particular the Calvin-Benson-Bassham pathway and the reductive tricarboxylic acid cycles for CO2 fixation, were identified in sulfur-oxidizing autotrophic bacteria. In contrast, highly abundant genes related to the oxidation of short-chain alkanes were grouped with sulfate-reducing bacteria, suggesting an important role for short-chain alkanes in the sulfur cycle. Furthermore, sulfur-oxidizing bacteria were associated with enrichment for genes involved in the denitrification pathway, while sulfate-reducing bacteria displayed enrichment for genes responsible for hydrogen utilization. In conclusion, this study provides insights regarding major microbial metabolic activities that are driven by the sulfur cycle in low-temperature hydrothermal chimneys present on an ultraslow midocean ridge. IMPORTANCE There have been limited studies on chimney sulfides located at ultraslow-spreading ridges. The analysis of metagenomes of hydrothermal chimneys on the ultraslow-spreading Southwest Indian Ridge suggests the presence of a microbial sulfur cycle. The sulfur cycle should be centralized within a microbial community that displays enrichment for sulfur metabolism-related genes. The present study elucidated a significant role of the microbial sulfur cycle in sustaining an entire microbial community in low-temperature hydrothermal chimneys on an ultraslow spreading midocean ridge, which has characteristics distinct from those of other types of hydrothermal fields. |
format |
article |
author |
Huiluo Cao Yong Wang On On Lee Xiang Zeng Zongze Shao Pei-Yuan Qian |
author_facet |
Huiluo Cao Yong Wang On On Lee Xiang Zeng Zongze Shao Pei-Yuan Qian |
author_sort |
Huiluo Cao |
title |
Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge |
title_short |
Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge |
title_full |
Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge |
title_fullStr |
Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge |
title_full_unstemmed |
Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge |
title_sort |
microbial sulfur cycle in two hydrothermal chimneys on the southwest indian ridge |
publisher |
American Society for Microbiology |
publishDate |
2014 |
url |
https://doaj.org/article/bb66e139a302409aba4130addbe0ea48 |
work_keys_str_mv |
AT huiluocao microbialsulfurcycleintwohydrothermalchimneysonthesouthwestindianridge AT yongwang microbialsulfurcycleintwohydrothermalchimneysonthesouthwestindianridge AT ononlee microbialsulfurcycleintwohydrothermalchimneysonthesouthwestindianridge AT xiangzeng microbialsulfurcycleintwohydrothermalchimneysonthesouthwestindianridge AT zongzeshao microbialsulfurcycleintwohydrothermalchimneysonthesouthwestindianridge AT peiyuanqian microbialsulfurcycleintwohydrothermalchimneysonthesouthwestindianridge |
_version_ |
1718427608094343168 |