Industry 4.0-Oriented Deep Learning Models for Human Activity Recognition
According to the Industry 4.0 vision, humans in a smart factory, should be equipped with formidable and seamless communication capabilities and integrated into a cyber-physical system (CPS) that can be utilized to monitor and recognize human activity via artificial intelligence (e.g., deep learning)...
Guardado en:
Autores principales: | Saeed Mohsen, Ahmed Elkaseer, Steffen G. Scholz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb6dc818c9354e2c892c56a200131b9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
por: Liying Chang, et al.
Publicado: (2021) -
Urdu Sentiment Analysis via Multimodal Data Mining Based on Deep Learning Algorithms
por: Urooba Sehar, et al.
Publicado: (2021) -
Hybrid Deep Spatio-Temporal Models for Traffic Flow Prediction on Holidays and Under Adverse Weather
por: Wensong Zhang, et al.
Publicado: (2021) -
Prediction of Dominant Ocean Parameters for Sustainable Marine Environment
por: D. Menaka, et al.
Publicado: (2021) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
por: Diogo F. Costa Silva, et al.
Publicado: (2021)