Protein disulphide isomerase (PDI) is protective against amyotrophic lateral sclerosis (ALS)-related mutant Fused in Sarcoma (FUS) in in vitro models

Abstract Mutations in Fused in Sarcoma (FUS) are present in familial and sporadic cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). FUS is localised in the nucleus where it has important functions in DNA repair. However, in ALS/FTD, mutant FUS mislocalises from the nucl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Parakh, E. R. Perri, M. Vidal, J. Sultana, S. Shadfar, P. Mehta, A. Konopka, C. J. Thomas, D. M. Spencer, J. D. Atkin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bb745be584d64c03bede47b9c4477073
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Mutations in Fused in Sarcoma (FUS) are present in familial and sporadic cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). FUS is localised in the nucleus where it has important functions in DNA repair. However, in ALS/FTD, mutant FUS mislocalises from the nucleus to the cytoplasm where it forms inclusions, a key pathological hallmark of neurodegeneration. Mutant FUS also inhibits protein import into the nucleus, resulting in defects in nucleocytoplasmic transport. Fragmentation of the neuronal Golgi apparatus, induction of endoplasmic reticulum (ER) stress, and inhibition of ER-Golgi trafficking are also associated with mutant FUS misfolding in ALS. Protein disulphide isomerase (PDI) is an ER chaperone previously shown to be protective against misfolding associated with mutant superoxide dismutase 1 (SOD1) and TAR DNA-binding protein-43 (TDP-43) in cellular and zebrafish models. However, a protective role against mutant FUS in ALS has not been previously described. In this study, we demonstrate that PDI is protective against mutant FUS. In neuronal cell line and primary cultures, PDI restores defects in nuclear import, prevents the formation of mutant FUS inclusions, inhibits Golgi fragmentation, ER stress, ER-Golgi transport defects, and apoptosis. These findings imply that PDI is a new therapeutic target in FUS-associated ALS.