Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes
ABSTRACT Kaposi’s sarcoma (KS), a highly angiogenic and invasive tumor often involving different organ sites, including the oral cavity, is caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV). Diverse cell markers have been identified on KS tumor cells, but their origin remains a...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb74c3e53d824ed3a9758c805562a6af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bb74c3e53d824ed3a9758c805562a6af |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bb74c3e53d824ed3a9758c805562a6af2021-11-15T15:49:39ZHuman Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes10.1128/mBio.02109-152150-7511https://doaj.org/article/bb74c3e53d824ed3a9758c805562a6af2016-03-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02109-15https://doaj.org/toc/2150-7511ABSTRACT Kaposi’s sarcoma (KS), a highly angiogenic and invasive tumor often involving different organ sites, including the oral cavity, is caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV). Diverse cell markers have been identified on KS tumor cells, but their origin remains an enigma. We previously showed that KSHV could efficiently infect, transform, and reprogram rat primary mesenchymal stem cells (MSCs) into KS-like tumor cells. In this study, we showed that human primary MSCs derived from diverse organs, including bone marrow (MSCbm), adipose tissue (MSCa), dental pulp, gingiva tissue (GMSC), and exfoliated deciduous teeth, were permissive to KSHV infection. We successfully established long-term cultures of KSHV-infected MSCa, MSCbm, and GMSC (LTC-KMSCs). While LTC-KMSCs had lower proliferation rates than the uninfected cells, they expressed mixtures of KS markers and displayed differential angiogenic, invasive, and transforming phenotypes. Genetic analysis identified KSHV-derived microRNAs that mediated KSHV-induced angiogenic activity by activating the AKT pathway. These results indicated that human MSCs could be the KSHV target cells in vivo and established valid models for delineating the mechanism of KSHV infection, replication, and malignant transformation in biologically relevant cell types. IMPORTANCE Kaposi’s sarcoma is the most common cancer in AIDS patients. While KSHV infection is required for the development of Kaposi’s sarcoma, the origin of KSHV target cells remains unclear. We show that KSHV can efficiently infect human primary mesenchymal stem cells of diverse origins and reprogram them to acquire various degrees of Kaposi’s sarcoma-like cell makers and angiogenic, invasive, and transforming phenotypes. These results indicate that human mesenchymal stem cells might be the KSHV target cells and establish models for delineating the mechanism of KSHV-induced malignant transformation.Myung-Shin LeeHongfeng YuanHyungtaek JeonYing ZhuSeungmin YooSongtao ShiBrian KruegerRolf RenneChun LuJae U. JungShou-Jiang GaoAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 7, Iss 1 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Myung-Shin Lee Hongfeng Yuan Hyungtaek Jeon Ying Zhu Seungmin Yoo Songtao Shi Brian Krueger Rolf Renne Chun Lu Jae U. Jung Shou-Jiang Gao Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes |
description |
ABSTRACT Kaposi’s sarcoma (KS), a highly angiogenic and invasive tumor often involving different organ sites, including the oral cavity, is caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV). Diverse cell markers have been identified on KS tumor cells, but their origin remains an enigma. We previously showed that KSHV could efficiently infect, transform, and reprogram rat primary mesenchymal stem cells (MSCs) into KS-like tumor cells. In this study, we showed that human primary MSCs derived from diverse organs, including bone marrow (MSCbm), adipose tissue (MSCa), dental pulp, gingiva tissue (GMSC), and exfoliated deciduous teeth, were permissive to KSHV infection. We successfully established long-term cultures of KSHV-infected MSCa, MSCbm, and GMSC (LTC-KMSCs). While LTC-KMSCs had lower proliferation rates than the uninfected cells, they expressed mixtures of KS markers and displayed differential angiogenic, invasive, and transforming phenotypes. Genetic analysis identified KSHV-derived microRNAs that mediated KSHV-induced angiogenic activity by activating the AKT pathway. These results indicated that human MSCs could be the KSHV target cells in vivo and established valid models for delineating the mechanism of KSHV infection, replication, and malignant transformation in biologically relevant cell types. IMPORTANCE Kaposi’s sarcoma is the most common cancer in AIDS patients. While KSHV infection is required for the development of Kaposi’s sarcoma, the origin of KSHV target cells remains unclear. We show that KSHV can efficiently infect human primary mesenchymal stem cells of diverse origins and reprogram them to acquire various degrees of Kaposi’s sarcoma-like cell makers and angiogenic, invasive, and transforming phenotypes. These results indicate that human mesenchymal stem cells might be the KSHV target cells and establish models for delineating the mechanism of KSHV-induced malignant transformation. |
format |
article |
author |
Myung-Shin Lee Hongfeng Yuan Hyungtaek Jeon Ying Zhu Seungmin Yoo Songtao Shi Brian Krueger Rolf Renne Chun Lu Jae U. Jung Shou-Jiang Gao |
author_facet |
Myung-Shin Lee Hongfeng Yuan Hyungtaek Jeon Ying Zhu Seungmin Yoo Songtao Shi Brian Krueger Rolf Renne Chun Lu Jae U. Jung Shou-Jiang Gao |
author_sort |
Myung-Shin Lee |
title |
Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes |
title_short |
Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes |
title_full |
Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes |
title_fullStr |
Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes |
title_full_unstemmed |
Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes |
title_sort |
human mesenchymal stem cells of diverse origins support persistent infection with kaposi’s sarcoma-associated herpesvirus and manifest distinct angiogenic, invasive, and transforming phenotypes |
publisher |
American Society for Microbiology |
publishDate |
2016 |
url |
https://doaj.org/article/bb74c3e53d824ed3a9758c805562a6af |
work_keys_str_mv |
AT myungshinlee humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT hongfengyuan humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT hyungtaekjeon humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT yingzhu humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT seungminyoo humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT songtaoshi humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT briankrueger humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT rolfrenne humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT chunlu humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT jaeujung humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes AT shoujianggao humanmesenchymalstemcellsofdiverseoriginssupportpersistentinfectionwithkaposissarcomaassociatedherpesvirusandmanifestdistinctangiogenicinvasiveandtransformingphenotypes |
_version_ |
1718427481622446080 |