Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images
Abstract Both histologic subtypes and tumor mutation burden (TMB) represent important biomarkers in lung cancer, with implications for patient prognosis and treatment decisions. Typically, TMB is evaluated by comprehensive genomic profiling but this requires use of finite tissue specimens and costly...
Guardado en:
Autores principales: | Apaar Sadhwani, Huang-Wei Chang, Ali Behrooz, Trissia Brown, Isabelle Auvigne-Flament, Hardik Patel, Robert Findlater, Vanessa Velez, Fraser Tan, Kamilla Tekiela, Ellery Wulczyn, Eunhee S. Yi, Craig H. Mermel, Debra Hanks, Po-Hsuan Cameron Chen, Kimary Kulig, Cory Batenchuk, David F. Steiner, Peter Cimermancic |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb85166704e240079299ad3d736a4fbb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interpretable survival prediction for colorectal cancer using deep learning
por: Ellery Wulczyn, et al.
Publicado: (2021) -
GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
por: Marawan Ahmed, et al.
Publicado: (2021) -
A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis
por: Eleftherios Trivizakis, et al.
Publicado: (2021) -
Democracy Deficit in China: A Choice or Foreordained
por: Trissia Wijaya
Publicado: (2015) -
GENERATIONAL CLASSIFIER OF MODERN RUSSIAN SOCIETY
por: A. V. Milekhin, et al.
Publicado: (2021)