Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
Convolutional neural networks (CNNs) have been widely used in hyperspectral image classification in recent years. The training of CNNs relies on a large amount of labeled sample data. However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for hyperspectral images...
Guardado en:
Autores principales: | Tianyu Zhang, Cuiping Shi, Diling Liao, Liguo Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb856118ed184d3b857026df1cefcc80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) -
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
por: Ghulam Farooque, et al.
Publicado: (2021) -
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
por: Dongxu Liu, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021)