Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
Convolutional neural networks (CNNs) have been widely used in hyperspectral image classification in recent years. The training of CNNs relies on a large amount of labeled sample data. However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for hyperspectral images...
Enregistré dans:
Auteurs principaux: | Tianyu Zhang, Cuiping Shi, Diling Liao, Liguo Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bb856118ed184d3b857026df1cefcc80 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
par: Minghua Zhang, et autres
Publié: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
par: Hanjie Wu, et autres
Publié: (2021) -
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
par: Ghulam Farooque, et autres
Publié: (2021) -
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
par: Dongxu Liu, et autres
Publié: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
par: Xiaochen Lu, et autres
Publié: (2021)