Rate-Distortion Optimized Encoding for Deep Image Compression
Deep-learned variational auto-encoders (VAE) have shown remarkable capabilities for lossy image compression. These neural networks typically employ non-linear convolutional layers for finding a compressible representation of the input image. Advanced techniques such as vector quantization, context-a...
Guardado en:
Autores principales: | Michael Schafer, Sophie Pientka, Jonathan Pfaff, Heiko Schwarz, Detlev Marpe, Thomas Wiegand |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bb87eff80345459faf4e5ddac9532e1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
End-to-End Compression Towards Machine Vision: Network Architecture Design and Optimization
por: Shurun Wang, et al.
Publicado: (2021) -
Guest Editorial Circuits and Systems for Flexible Electronics
por: Lian Yong, et al.
Publicado: (2021) -
Editorial to the Special Section on Optimized Image/Video Coding Based on Deep Learning
por: Zhibo Chen, et al.
Publicado: (2021) -
Power Efficient Tiny Yolo CNN Using Reduced Hardware Resources Based on Booth Multiplier and WALLACE Tree Adders
por: Fasih Ud Din Farrukh, et al.
Publicado: (2020) -
Learned Image Compression With Separate Hyperprior Decoders
por: Zhao Zan, et al.
Publicado: (2021)