Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways

This work considered the sonochemical degradation (using a bath-type reactor, at 375 kHz and 106.3 W L-1, 250 mL of sample) of three representative halogenated pharmaceuticals (cloxacillin, diclofenac, and losartan) in urine matrices. The action route of the process was initially established. Then,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Efraím A. Serna-Galvis, John F. Guateque-Londoño, Javier Silva-Agredo, Jazmín Porras, Yenny Ávila-Torres, Ricardo A. Torres-Palma
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/bba2a7585a6a4ae282ebf6c2eacc5ccd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bba2a7585a6a4ae282ebf6c2eacc5ccd
record_format dspace
spelling oai:doaj.org-article:bba2a7585a6a4ae282ebf6c2eacc5ccd2021-12-02T04:59:49ZSuperior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways1350-417710.1016/j.ultsonch.2021.105814https://doaj.org/article/bba2a7585a6a4ae282ebf6c2eacc5ccd2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1350417721003564https://doaj.org/toc/1350-4177This work considered the sonochemical degradation (using a bath-type reactor, at 375 kHz and 106.3 W L-1, 250 mL of sample) of three representative halogenated pharmaceuticals (cloxacillin, diclofenac, and losartan) in urine matrices. The action route of the process was initially established. Then, the selectivity of the sonochemical system, to degrade the target pharmaceuticals in simulated fresh urine was compared with electrochemical oxidation (using a BDD anode, at 1.88 mA cm−2), and UVC/H2O2 (at 60 W of light and 500 mol L-1 of H2O2). Also, the treatment of cloxacillin in an actual urine sample by ultrasound and UVC/H2O2 was evaluated. More than 90% of the target compounds concentration, in the simulated matrix, was removed after 60 min of sonication. However, the sono-treatment of cloxacillin in the real sample was less efficient than in the synthetic urine. The ultrasonic process achieved 43% of degradation after 90 min of treatment in the actual matrix. In the sonochemical system, hydroxyl radicals in the interfacial zone were the main degrading agents. Meanwhile, in the electrochemical process, electrogenerated HOCl was responsible for the elimination of pharmaceuticals. In turn, in UVC/H2O2 both direct photolysis and hydroxyl radicals degraded the target pollutants. Interestingly, the degradation by ultrasound of the pharmaceuticals in synthetic fresh urine was very close to the observed in distilled water. Indeed, the sonodegradation had a higher selectivity than the other two processes. Despite the sono-treatment of cloxacillin was affected by the actual matrix components, this contrasts with the UVC/H2O2, which was completely inhibited in the real urine. The sonochemical process led to 100% of antimicrobial activity (AA) elimination after 75 min sonication in the synthetic urine, and ∼ 20% of AA was diminished after 90 min of treatment in the real matrix. The AA decreasing was linked to the transformations of the penicillin nucleus on cloxacillin, the region most prone to electrophilic attacks by radicals according to a density theory functional analysis. Finally, predictions of biological activity confirmed that the sono-treatment decreased the activity associated with cloxacillin, diclofenac, and losartan, highlighting the positive environmental impact of degradation of chlorinated pharmaceuticals in urine.Efraím A. Serna-GalvisJohn F. Guateque-LondoñoJavier Silva-AgredoJazmín PorrasYenny Ávila-TorresRicardo A. Torres-PalmaElsevierarticleBiological activity changesDegradation routesHalogenated pharmaceuticals eliminationProcesses selectivitySonochemical systemUrine treatmentChemistryQD1-999Acoustics. SoundQC221-246ENUltrasonics Sonochemistry, Vol 80, Iss , Pp 105814- (2021)
institution DOAJ
collection DOAJ
language EN
topic Biological activity changes
Degradation routes
Halogenated pharmaceuticals elimination
Processes selectivity
Sonochemical system
Urine treatment
Chemistry
QD1-999
Acoustics. Sound
QC221-246
spellingShingle Biological activity changes
Degradation routes
Halogenated pharmaceuticals elimination
Processes selectivity
Sonochemical system
Urine treatment
Chemistry
QD1-999
Acoustics. Sound
QC221-246
Efraím A. Serna-Galvis
John F. Guateque-Londoño
Javier Silva-Agredo
Jazmín Porras
Yenny Ávila-Torres
Ricardo A. Torres-Palma
Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways
description This work considered the sonochemical degradation (using a bath-type reactor, at 375 kHz and 106.3 W L-1, 250 mL of sample) of three representative halogenated pharmaceuticals (cloxacillin, diclofenac, and losartan) in urine matrices. The action route of the process was initially established. Then, the selectivity of the sonochemical system, to degrade the target pharmaceuticals in simulated fresh urine was compared with electrochemical oxidation (using a BDD anode, at 1.88 mA cm−2), and UVC/H2O2 (at 60 W of light and 500 mol L-1 of H2O2). Also, the treatment of cloxacillin in an actual urine sample by ultrasound and UVC/H2O2 was evaluated. More than 90% of the target compounds concentration, in the simulated matrix, was removed after 60 min of sonication. However, the sono-treatment of cloxacillin in the real sample was less efficient than in the synthetic urine. The ultrasonic process achieved 43% of degradation after 90 min of treatment in the actual matrix. In the sonochemical system, hydroxyl radicals in the interfacial zone were the main degrading agents. Meanwhile, in the electrochemical process, electrogenerated HOCl was responsible for the elimination of pharmaceuticals. In turn, in UVC/H2O2 both direct photolysis and hydroxyl radicals degraded the target pollutants. Interestingly, the degradation by ultrasound of the pharmaceuticals in synthetic fresh urine was very close to the observed in distilled water. Indeed, the sonodegradation had a higher selectivity than the other two processes. Despite the sono-treatment of cloxacillin was affected by the actual matrix components, this contrasts with the UVC/H2O2, which was completely inhibited in the real urine. The sonochemical process led to 100% of antimicrobial activity (AA) elimination after 75 min sonication in the synthetic urine, and ∼ 20% of AA was diminished after 90 min of treatment in the real matrix. The AA decreasing was linked to the transformations of the penicillin nucleus on cloxacillin, the region most prone to electrophilic attacks by radicals according to a density theory functional analysis. Finally, predictions of biological activity confirmed that the sono-treatment decreased the activity associated with cloxacillin, diclofenac, and losartan, highlighting the positive environmental impact of degradation of chlorinated pharmaceuticals in urine.
format article
author Efraím A. Serna-Galvis
John F. Guateque-Londoño
Javier Silva-Agredo
Jazmín Porras
Yenny Ávila-Torres
Ricardo A. Torres-Palma
author_facet Efraím A. Serna-Galvis
John F. Guateque-Londoño
Javier Silva-Agredo
Jazmín Porras
Yenny Ávila-Torres
Ricardo A. Torres-Palma
author_sort Efraím A. Serna-Galvis
title Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways
title_short Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways
title_full Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways
title_fullStr Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways
title_full_unstemmed Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways
title_sort superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: a comparative study with other oxidation processes through the elucidation of the degradation pathways
publisher Elsevier
publishDate 2021
url https://doaj.org/article/bba2a7585a6a4ae282ebf6c2eacc5ccd
work_keys_str_mv AT efraimasernagalvis superiorselectivityofhighfrequencyultrasoundtowardchorinecontainingpharmaceuticalseliminationinurineacomparativestudywithotheroxidationprocessesthroughtheelucidationofthedegradationpathways
AT johnfguatequelondono superiorselectivityofhighfrequencyultrasoundtowardchorinecontainingpharmaceuticalseliminationinurineacomparativestudywithotheroxidationprocessesthroughtheelucidationofthedegradationpathways
AT javiersilvaagredo superiorselectivityofhighfrequencyultrasoundtowardchorinecontainingpharmaceuticalseliminationinurineacomparativestudywithotheroxidationprocessesthroughtheelucidationofthedegradationpathways
AT jazminporras superiorselectivityofhighfrequencyultrasoundtowardchorinecontainingpharmaceuticalseliminationinurineacomparativestudywithotheroxidationprocessesthroughtheelucidationofthedegradationpathways
AT yennyavilatorres superiorselectivityofhighfrequencyultrasoundtowardchorinecontainingpharmaceuticalseliminationinurineacomparativestudywithotheroxidationprocessesthroughtheelucidationofthedegradationpathways
AT ricardoatorrespalma superiorselectivityofhighfrequencyultrasoundtowardchorinecontainingpharmaceuticalseliminationinurineacomparativestudywithotheroxidationprocessesthroughtheelucidationofthedegradationpathways
_version_ 1718400914322096128