Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation

Abstract Patient-ventilator asynchronies can be detected by close monitoring of ventilator screens by clinicians or through automated algorithms. However, detecting complex patient-ventilator interactions (CP-VI), consisting of changes in the respiratory rate and/or clusters of asynchronies, is a ch...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Leonardo Sarlabous, José Aquino-Esperanza, Rudys Magrans, Candelaria de Haro, Josefina López-Aguilar, Carles Subirà, Montserrat Batlle, Montserrat Rué, Gemma Gomà, Ana Ochagavia, Rafael Fernández, Lluís Blanch
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bba6a7931fe740f496ba5ff618e35376
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bba6a7931fe740f496ba5ff618e35376
record_format dspace
spelling oai:doaj.org-article:bba6a7931fe740f496ba5ff618e353762021-12-02T16:46:33ZDevelopment and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation10.1038/s41598-020-70814-42045-2322https://doaj.org/article/bba6a7931fe740f496ba5ff618e353762020-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-70814-4https://doaj.org/toc/2045-2322Abstract Patient-ventilator asynchronies can be detected by close monitoring of ventilator screens by clinicians or through automated algorithms. However, detecting complex patient-ventilator interactions (CP-VI), consisting of changes in the respiratory rate and/or clusters of asynchronies, is a challenge. Sample Entropy (SE) of airway flow (SE-Flow) and airway pressure (SE-Paw) waveforms obtained from 27 critically ill patients was used to develop and validate an automated algorithm for detecting CP-VI. The algorithm’s performance was compared versus the gold standard (the ventilator’s waveform recordings for CP-VI were scored visually by three experts; Fleiss’ kappa = 0.90 (0.87–0.93)). A repeated holdout cross-validation procedure using the Matthews correlation coefficient (MCC) as a measure of effectiveness was used for optimization of different combinations of SE settings (embedding dimension, m, and tolerance value, r), derived SE features (mean and maximum values), and the thresholds of change (Th) from patient’s own baseline SE value. The most accurate results were obtained using the maximum values of SE-Flow (m = 2, r = 0.2, Th = 25%) and SE-Paw (m = 4, r = 0.2, Th = 30%) which report MCCs of 0.85 (0.78–0.86) and 0.78 (0.78–0.85), and accuracies of 0.93 (0.89–0.93) and 0.89 (0.89–0.93), respectively. This approach promises an improvement in the accurate detection of CP-VI, and future study of their clinical implications.Leonardo SarlabousJosé Aquino-EsperanzaRudys MagransCandelaria de HaroJosefina López-AguilarCarles SubiràMontserrat BatlleMontserrat RuéGemma GomàAna OchagaviaRafael FernándezLluís BlanchNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Leonardo Sarlabous
José Aquino-Esperanza
Rudys Magrans
Candelaria de Haro
Josefina López-Aguilar
Carles Subirà
Montserrat Batlle
Montserrat Rué
Gemma Gomà
Ana Ochagavia
Rafael Fernández
Lluís Blanch
Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
description Abstract Patient-ventilator asynchronies can be detected by close monitoring of ventilator screens by clinicians or through automated algorithms. However, detecting complex patient-ventilator interactions (CP-VI), consisting of changes in the respiratory rate and/or clusters of asynchronies, is a challenge. Sample Entropy (SE) of airway flow (SE-Flow) and airway pressure (SE-Paw) waveforms obtained from 27 critically ill patients was used to develop and validate an automated algorithm for detecting CP-VI. The algorithm’s performance was compared versus the gold standard (the ventilator’s waveform recordings for CP-VI were scored visually by three experts; Fleiss’ kappa = 0.90 (0.87–0.93)). A repeated holdout cross-validation procedure using the Matthews correlation coefficient (MCC) as a measure of effectiveness was used for optimization of different combinations of SE settings (embedding dimension, m, and tolerance value, r), derived SE features (mean and maximum values), and the thresholds of change (Th) from patient’s own baseline SE value. The most accurate results were obtained using the maximum values of SE-Flow (m = 2, r = 0.2, Th = 25%) and SE-Paw (m = 4, r = 0.2, Th = 30%) which report MCCs of 0.85 (0.78–0.86) and 0.78 (0.78–0.85), and accuracies of 0.93 (0.89–0.93) and 0.89 (0.89–0.93), respectively. This approach promises an improvement in the accurate detection of CP-VI, and future study of their clinical implications.
format article
author Leonardo Sarlabous
José Aquino-Esperanza
Rudys Magrans
Candelaria de Haro
Josefina López-Aguilar
Carles Subirà
Montserrat Batlle
Montserrat Rué
Gemma Gomà
Ana Ochagavia
Rafael Fernández
Lluís Blanch
author_facet Leonardo Sarlabous
José Aquino-Esperanza
Rudys Magrans
Candelaria de Haro
Josefina López-Aguilar
Carles Subirà
Montserrat Batlle
Montserrat Rué
Gemma Gomà
Ana Ochagavia
Rafael Fernández
Lluís Blanch
author_sort Leonardo Sarlabous
title Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
title_short Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
title_full Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
title_fullStr Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
title_full_unstemmed Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
title_sort development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/bba6a7931fe740f496ba5ff618e35376
work_keys_str_mv AT leonardosarlabous developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT joseaquinoesperanza developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT rudysmagrans developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT candelariadeharo developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT josefinalopezaguilar developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT carlessubira developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT montserratbatlle developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT montserratrue developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT gemmagoma developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT anaochagavia developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT rafaelfernandez developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
AT lluisblanch developmentandvalidationofasampleentropybasedmethodtoidentifycomplexpatientventilatorinteractionsduringmechanicalventilation
_version_ 1718383417857409024