Incorporation of a Nitric Oxide Donating Motif into Novel PC-PLC Inhibitors Provides Enhanced Anti-Proliferative Activity
Inhibition of phosphatidylcholine-specific phospholipase C (PC-PLC) has previously been shown to be a potential target for novel cancer therapeutics. One downstream consequence of PC-PLC activity is the activation of NF-κB, a nuclear transcription factor responsible for transcribing genes related to...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bbb885a4388a45739df8c7fe2316f4e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Inhibition of phosphatidylcholine-specific phospholipase C (PC-PLC) has previously been shown to be a potential target for novel cancer therapeutics. One downstream consequence of PC-PLC activity is the activation of NF-κB, a nuclear transcription factor responsible for transcribing genes related to oncogenic traits, such as proliferation, angiogenesis, metastasis, and cancer cell survival. Another biological pathway linked to NF-κB is the exogenous delivery of nitric oxide (NO), which decreases NF-κB activity through an apparent negative-feedback loop. In this study, we designed and synthesised 13 novel NO-releasing derivatives of our previously reported class of PC-PLC inhibitors, 2-morpholinobenzoic acids. These molecules contained a secondary benzylamine group, which was readily nitrosylated and subsequently confirmed to release NO in vitro using a DAF-FM fluorescence-based assay. It was then discovered that these NO-releasing derivatives possessed significantly improved anti-proliferative activity in both MDA-MB-231 and HCT116 cancer cell lines compared to their non-nitrosylated parent compounds. These results confirmed that the inclusion of an exogenous NO-releasing functional group onto a known PC-PLC inhibitor enhances anti-proliferative activity and that this relationship can be exploited in order to further improve the anti-proliferative activity of current/future PC-PLC inhibitors. |
---|