scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics
Making sense of the rapidly growing single-cell omics datasets available is limited by difficulties in leveraging disparate datasets in analyses. Here, the authors present scGCN, a graph based convolutional network to allow effective knowledge transfer across omics datasets.
Guardado en:
Autores principales: | Qianqian Song, Jing Su, Wei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bbbe438249ed4e82920ea7ff27f11534 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GCN-CNVPS: Novel Method for Cooperative Neighboring Vehicle Positioning System Based on Graph Convolution Network
por: Chia-Hung Lin, et al.
Publicado: (2021) -
Compressing deep graph convolution network with multi-staged knowledge distillation.
por: Junghun Kim, et al.
Publicado: (2021) -
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
por: Tongxin Wang, et al.
Publicado: (2021) -
scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets
por: Qianqian Song, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021)