Multi-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments

Hybrid aerial underwater vehicles (HAUV) are a new frontier for vehicles. They can operate both underwater and aerially, providing enormous potential for a wide range of scientific explorations. Informative path planning is essential to vehicle autonomy. However, covering an entire mission region is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xueyao Liang, Chunhu Liu, Zheng Zeng
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/bbe2520059954f05b92068d8bcfa7a0b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bbe2520059954f05b92068d8bcfa7a0b
record_format dspace
spelling oai:doaj.org-article:bbe2520059954f05b92068d8bcfa7a0b2021-11-25T18:12:14ZMulti-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments10.3390/machines91102782075-1702https://doaj.org/article/bbe2520059954f05b92068d8bcfa7a0b2021-11-01T00:00:00Zhttps://www.mdpi.com/2075-1702/9/11/278https://doaj.org/toc/2075-1702Hybrid aerial underwater vehicles (HAUV) are a new frontier for vehicles. They can operate both underwater and aerially, providing enormous potential for a wide range of scientific explorations. Informative path planning is essential to vehicle autonomy. However, covering an entire mission region is a challenge to HAUVs because of the possibility of a multidomain environment. This paper presents an informative trajectory planning framework for planning paths and generating trajectories for HAUVs performing multidomain missions in dynamic environments. We introduce the novel heuristic generalized extensive neighborhood search GLNS–k-means algorithm that uses k-means to cluster information into several sets; then through the heuristic GLNS algorithm, it searches the best path for visiting these points, subject to various constraints regarding path budgets and the motion capabilities of the HAUV. With this approach, the HAUV is capable of sampling and focusing on regions of interest. Our method provides a significantly more optimal trajectory (enabling collection of more information) than ant colony optimization (ACO) solutions. Moreover, we introduce an efficient online replanning scheme to adapt the trajectory according to the dynamic obstacles during the mission. The proposed replanning scheme based on KD tree enables significantly shorter computational times than the scapegoat tree methods.Xueyao LiangChunhu LiuZheng ZengMDPI AGarticleunderwater vehiclehybrid aerial underwater vehicleinformative path planningMechanical engineering and machineryTJ1-1570ENMachines, Vol 9, Iss 278, p 278 (2021)
institution DOAJ
collection DOAJ
language EN
topic underwater vehicle
hybrid aerial underwater vehicle
informative path planning
Mechanical engineering and machinery
TJ1-1570
spellingShingle underwater vehicle
hybrid aerial underwater vehicle
informative path planning
Mechanical engineering and machinery
TJ1-1570
Xueyao Liang
Chunhu Liu
Zheng Zeng
Multi-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments
description Hybrid aerial underwater vehicles (HAUV) are a new frontier for vehicles. They can operate both underwater and aerially, providing enormous potential for a wide range of scientific explorations. Informative path planning is essential to vehicle autonomy. However, covering an entire mission region is a challenge to HAUVs because of the possibility of a multidomain environment. This paper presents an informative trajectory planning framework for planning paths and generating trajectories for HAUVs performing multidomain missions in dynamic environments. We introduce the novel heuristic generalized extensive neighborhood search GLNS–k-means algorithm that uses k-means to cluster information into several sets; then through the heuristic GLNS algorithm, it searches the best path for visiting these points, subject to various constraints regarding path budgets and the motion capabilities of the HAUV. With this approach, the HAUV is capable of sampling and focusing on regions of interest. Our method provides a significantly more optimal trajectory (enabling collection of more information) than ant colony optimization (ACO) solutions. Moreover, we introduce an efficient online replanning scheme to adapt the trajectory according to the dynamic obstacles during the mission. The proposed replanning scheme based on KD tree enables significantly shorter computational times than the scapegoat tree methods.
format article
author Xueyao Liang
Chunhu Liu
Zheng Zeng
author_facet Xueyao Liang
Chunhu Liu
Zheng Zeng
author_sort Xueyao Liang
title Multi-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments
title_short Multi-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments
title_full Multi-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments
title_fullStr Multi-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments
title_full_unstemmed Multi-Domain Informative Coverage Path Planning for a Hybrid Aerial Underwater Vehicle in Dynamic Environments
title_sort multi-domain informative coverage path planning for a hybrid aerial underwater vehicle in dynamic environments
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/bbe2520059954f05b92068d8bcfa7a0b
work_keys_str_mv AT xueyaoliang multidomaininformativecoveragepathplanningforahybridaerialunderwatervehicleindynamicenvironments
AT chunhuliu multidomaininformativecoveragepathplanningforahybridaerialunderwatervehicleindynamicenvironments
AT zhengzeng multidomaininformativecoveragepathplanningforahybridaerialunderwatervehicleindynamicenvironments
_version_ 1718411520873857024