A comparison of convolutional neural networks for Kazakh sign language recognition
For people with disabilities, sign language is the most important means of communication. Therefore, more and more authors of various papers and scientists around the world are proposing solutions to use intelligent hand gesture recognition systems. Such a system is aimed not only for those who wish...
Enregistré dans:
Auteurs principaux: | Chingiz Kenshimov, Samat Mukhanov, Timur Merembayev, Didar Yedilkhan |
---|---|
Format: | article |
Langue: | EN RU UK |
Publié: |
PC Technology Center
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bbffd941b98c492e9d9606919a0e9b09 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Review of the Hand Gesture Recognition System: Current Progress and Future Directions
par: Noraini Mohamed, et autres
Publié: (2021) -
Improvement of the model of object recognition in aero photographs using deep convolutional neural networks
par: Vadym Slyusar, et autres
Publié: (2021) -
Egocentric Gesture Recognition Using 3D Convolutional Neural Networks for the Spatiotemporal Adaptation of Collaborative Robots
par: Dimitris Papanagiotou, et autres
Publié: (2021) -
A Novel EMG-Based Hand Gesture Recognition Framework Based on Multivariate Variational Mode Decomposition
par: Kun Yang, et autres
Publié: (2021) -
Analysis of fault diagnosis of DC motors by power consumption pattern recognition
par: Hasan Shakir Majdi, et autres
Publié: (2021)