A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions
Predicting crop performance in environments with limited field testing is challenging. Here the authors combine field experimental, DNA sequence, and weather data to predict genotypes’ future performance. They demonstrate the potential of this approach on a large dataset of wheat grain yield.
Guardado en:
Autores principales: | Gustavo de los Campos, Paulino Pérez-Rodríguez, Matthieu Bogard, David Gouache, José Crossa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc194300c8a94b7fa8b5e2c7874bcc25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions
por: Gustavo de los Campos, et al.
Publicado: (2021) -
Data-Driven Health Assessment in a Flight Control System under Uncertain Conditions
por: Jie Chen, et al.
Publicado: (2021) -
Urban search and rescue (USAR) simulation system: spatial strategies for agent task allocation under uncertain conditions
por: N. Hooshangi, et al.
Publicado: (2021) -
Measurement of Water Level in Urban Streams under Bad Weather Conditions
por: Joaquim Amândio Azevedo, et al.
Publicado: (2021) -
An Economic Model to Assess Profitable Scenarios of EAF-Based Steelmaking Plants under Uncertain Conditions
por: Francesco Facchini, et al.
Publicado: (2021)