Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics
Abstract Machine learning is widely applied in drug discovery research to predict molecular properties and aid in the identification of active compounds. Herein, we introduce a new approach that uses model-internal information from compound activity predictions to uncover relationships between targe...
Guardado en:
Autores principales: | Raquel Rodríguez-Pérez, Jürgen Bajorath |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc252408c3dc491e81bac622c5fb9155 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explainable machine learning predictions of dual-target compounds reveal characteristic structural features
por: Christian Feldmann, et al.
Publicado: (2021) -
Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations
por: Christian Feldmann, et al.
Publicado: (2021) -
Enhancing the pattern recognition capacity of machine learning techniques: The importance of feature positioning
por: Debora Di Caprio, et al.
Publicado: (2022) -
Using machine learning analysis to interpret the relationship between music emotion and lyric features
por: Liang Xu, et al.
Publicado: (2021) -
Semantic similarity for automatic classification of chemical compounds.
por: João D Ferreira, et al.
Publicado: (2010)