Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest

Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon conte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ch. Hu, K. Yang
Formato: article
Lenguaje:EN
Publicado: Croatian Metallurgical Society 2022
Materias:
Acceso en línea:https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %.