Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest

Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon conte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ch. Hu, K. Yang
Formato: article
Lenguaje:EN
Publicado: Croatian Metallurgical Society 2022
Materias:
Acceso en línea:https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bc29ebf22c32404fa58e4f8ceb2e9fab
record_format dspace
spelling oai:doaj.org-article:bc29ebf22c32404fa58e4f8ceb2e9fab2021-11-28T20:04:11ZPrediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest0543-58461334-2576https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab2022-01-01T00:00:00Zhttps://hrcak.srce.hr/file/386154https://doaj.org/toc/0543-5846https://doaj.org/toc/1334-2576Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %.Ch. HuK. YangCroatian Metallurgical Societyarticleblast furnacehot metalsiliconparticle swarm optimizationgolden sine algorithmrandom forestMining engineering. MetallurgyTN1-997ENMetalurgija, Vol 61, Iss 2, Pp 325-328 (2022)
institution DOAJ
collection DOAJ
language EN
topic blast furnace
hot metal
silicon
particle swarm optimization
golden sine algorithm
random forest
Mining engineering. Metallurgy
TN1-997
spellingShingle blast furnace
hot metal
silicon
particle swarm optimization
golden sine algorithm
random forest
Mining engineering. Metallurgy
TN1-997
Ch. Hu
K. Yang
Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
description Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %.
format article
author Ch. Hu
K. Yang
author_facet Ch. Hu
K. Yang
author_sort Ch. Hu
title Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
title_short Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
title_full Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
title_fullStr Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
title_full_unstemmed Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
title_sort prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
publisher Croatian Metallurgical Society
publishDate 2022
url https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab
work_keys_str_mv AT chhu predictionofsiliconcontentinhotmetalbasedongoldensineparticleswarmoptimizationandrandomforest
AT kyang predictionofsiliconcontentinhotmetalbasedongoldensineparticleswarmoptimizationandrandomforest
_version_ 1718407794424545280