Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon conte...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Croatian Metallurgical Society
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bc29ebf22c32404fa58e4f8ceb2e9fab |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bc29ebf22c32404fa58e4f8ceb2e9fab2021-11-28T20:04:11ZPrediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest0543-58461334-2576https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab2022-01-01T00:00:00Zhttps://hrcak.srce.hr/file/386154https://doaj.org/toc/0543-5846https://doaj.org/toc/1334-2576Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %.Ch. HuK. YangCroatian Metallurgical Societyarticleblast furnacehot metalsiliconparticle swarm optimizationgolden sine algorithmrandom forestMining engineering. MetallurgyTN1-997ENMetalurgija, Vol 61, Iss 2, Pp 325-328 (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
blast furnace hot metal silicon particle swarm optimization golden sine algorithm random forest Mining engineering. Metallurgy TN1-997 |
spellingShingle |
blast furnace hot metal silicon particle swarm optimization golden sine algorithm random forest Mining engineering. Metallurgy TN1-997 Ch. Hu K. Yang Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest |
description |
Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %. |
format |
article |
author |
Ch. Hu K. Yang |
author_facet |
Ch. Hu K. Yang |
author_sort |
Ch. Hu |
title |
Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest |
title_short |
Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest |
title_full |
Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest |
title_fullStr |
Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest |
title_full_unstemmed |
Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest |
title_sort |
prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest |
publisher |
Croatian Metallurgical Society |
publishDate |
2022 |
url |
https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab |
work_keys_str_mv |
AT chhu predictionofsiliconcontentinhotmetalbasedongoldensineparticleswarmoptimizationandrandomforest AT kyang predictionofsiliconcontentinhotmetalbasedongoldensineparticleswarmoptimizationandrandomforest |
_version_ |
1718407794424545280 |