Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest
Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon conte...
Guardado en:
Autores principales: | Ch. Hu, K. Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Croatian Metallurgical Society
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc29ebf22c32404fa58e4f8ceb2e9fab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Seismic performance analysis of blast furnace shell structure
por: W. Zhang, et al.
Publicado: (2022) -
Experimental and Numerical Investigations on Charging Carbon Composite Briquettes in a Blast Furnace
por: Qiang Wang, et al.
Publicado: (2021) -
Hot Rolling of the Twin-Roll Cast and Homogenized Mg-6.8Y-2.5Zn (WZ73) Magnesium Alloy Containing LPSO Structures
por: Madlen Ullmann, et al.
Publicado: (2021) -
Sine Entropy of Uncertain Random Variables
por: Gang Shi, et al.
Publicado: (2021) -
Investigation of effective geometrical parameters on wear of hot forging die
por: Mohammadmahdi Davoudi, et al.
Publicado: (2021)