Quantum simulations with multiphoton Fock states

Abstract Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. J. Sturges, T. McDermott, A. Buraczewski, W. R. Clements, J. J. Renema, S. W. Nam, T. Gerrits, A. Lita, W. S. Kolthammer, A. Eckstein, I. A. Walmsley, M. Stobińska
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/bc2c3cedcb8d4225aa4ca115a0951ccc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in proof-of-principle experiments are collections of qubits, coherent states or multiple single-particle Fock states. Here we show a quantum simulation performed using genuine higher-order Fock states, with two or more indistinguishable particles occupying the same bosonic mode. This was implemented by interfering pairs of Fock states with up to five photons on an interferometer, and measuring the output states with photon-number-resolving detectors. Already this resource-efficient demonstration reveals topological matter, simulates non-linear systems and elucidates a perfect quantum transfer mechanism which can be used to transport Majorana fermions.