Performance Improvement of Neural Network Based RLS Channel Estimators in MIMO-OFDM Systems

The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Alaa Abdulameer Hassan
Format: article
Langue:EN
Publié: Al-Khwarizmi College of Engineering – University of Baghdad 2011
Sujets:
RLS
NN
BER
SNR
Accès en ligne:https://doaj.org/article/bc2ca732d6fd4e3a8eeb67b758f8e106
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust at high speed mobility.