Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients

Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: JungHo Kong, Heetak Lee, Donghyo Kim, Seong Kyu Han, Doyeon Ha, Kunyoo Shin, Sanguk Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/bc2d4c908ac14d54ad3b9ed62cdef10f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bc2d4c908ac14d54ad3b9ed62cdef10f
record_format dspace
spelling oai:doaj.org-article:bc2d4c908ac14d54ad3b9ed62cdef10f2021-12-02T17:31:07ZNetwork-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients10.1038/s41467-020-19313-82041-1723https://doaj.org/article/bc2d4c908ac14d54ad3b9ed62cdef10f2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19313-8https://doaj.org/toc/2041-1723Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data.JungHo KongHeetak LeeDonghyo KimSeong Kyu HanDoyeon HaKunyoo ShinSanguk KimNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
JungHo Kong
Heetak Lee
Donghyo Kim
Seong Kyu Han
Doyeon Ha
Kunyoo Shin
Sanguk Kim
Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
description Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data.
format article
author JungHo Kong
Heetak Lee
Donghyo Kim
Seong Kyu Han
Doyeon Ha
Kunyoo Shin
Sanguk Kim
author_facet JungHo Kong
Heetak Lee
Donghyo Kim
Seong Kyu Han
Doyeon Ha
Kunyoo Shin
Sanguk Kim
author_sort JungHo Kong
title Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
title_short Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
title_full Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
title_fullStr Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
title_full_unstemmed Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
title_sort network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/bc2d4c908ac14d54ad3b9ed62cdef10f
work_keys_str_mv AT junghokong networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients
AT heetaklee networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients
AT donghyokim networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients
AT seongkyuhan networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients
AT doyeonha networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients
AT kunyooshin networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients
AT sangukkim networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients
_version_ 1718380695814930432