Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc2d4c908ac14d54ad3b9ed62cdef10f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bc2d4c908ac14d54ad3b9ed62cdef10f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bc2d4c908ac14d54ad3b9ed62cdef10f2021-12-02T17:31:07ZNetwork-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients10.1038/s41467-020-19313-82041-1723https://doaj.org/article/bc2d4c908ac14d54ad3b9ed62cdef10f2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19313-8https://doaj.org/toc/2041-1723Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data.JungHo KongHeetak LeeDonghyo KimSeong Kyu HanDoyeon HaKunyoo ShinSanguk KimNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q JungHo Kong Heetak Lee Donghyo Kim Seong Kyu Han Doyeon Ha Kunyoo Shin Sanguk Kim Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients |
description |
Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data. |
format |
article |
author |
JungHo Kong Heetak Lee Donghyo Kim Seong Kyu Han Doyeon Ha Kunyoo Shin Sanguk Kim |
author_facet |
JungHo Kong Heetak Lee Donghyo Kim Seong Kyu Han Doyeon Ha Kunyoo Shin Sanguk Kim |
author_sort |
JungHo Kong |
title |
Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients |
title_short |
Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients |
title_full |
Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients |
title_fullStr |
Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients |
title_full_unstemmed |
Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients |
title_sort |
network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/bc2d4c908ac14d54ad3b9ed62cdef10f |
work_keys_str_mv |
AT junghokong networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients AT heetaklee networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients AT donghyokim networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients AT seongkyuhan networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients AT doyeonha networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients AT kunyooshin networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients AT sangukkim networkbasedmachinelearningincolorectalandbladderorganoidmodelspredictsanticancerdrugefficacyinpatients |
_version_ |
1718380695814930432 |