Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data...
Guardado en:
Autores principales: | JungHo Kong, Heetak Lee, Donghyo Kim, Seong Kyu Han, Doyeon Ha, Kunyoo Shin, Sanguk Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc2d4c908ac14d54ad3b9ed62cdef10f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids
por: Bryce McCarthy, et al.
Publicado: (2021) -
A bladder cancer patient-derived xenograft displays aggressive growth dynamics in vivo and in organoid culture
por: Elise Y. Cai, et al.
Publicado: (2021) -
A new murine esophageal organoid culture method and organoid-based model of esophageal squamous cell neoplasia
por: Biyun Zheng, et al.
Publicado: (2021) -
Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening
por: Minsuh Kim, et al.
Publicado: (2019) -
Pharmacodynamic Studies of Fluorescent Diamond Carriers of Doxorubicin in Liver Cancer Cells and Colorectal Cancer Organoids
por: Firestein R, et al.
Publicado: (2021)