Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc2eb4fb9a004314a1abfc90ffd9d909 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to be determined, the recursive application of the operator associated to the equivalent integral problem to functions belonging to such a cone, and the calculation of the Collatz–Wielandt numbers of the resulting functions. |
---|