Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems

This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pedro Almenar, Lucas Jódar
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/bc2eb4fb9a004314a1abfc90ffd9d909
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bc2eb4fb9a004314a1abfc90ffd9d909
record_format dspace
spelling oai:doaj.org-article:bc2eb4fb9a004314a1abfc90ffd9d9092021-11-11T18:14:11ZAccurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems10.3390/math92126632227-7390https://doaj.org/article/bc2eb4fb9a004314a1abfc90ffd9d9092021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2663https://doaj.org/toc/2227-7390This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to be determined, the recursive application of the operator associated to the equivalent integral problem to functions belonging to such a cone, and the calculation of the Collatz–Wielandt numbers of the resulting functions.Pedro AlmenarLucas JódarMDPI AGarticle<i>n</i>-th order linear differential equationtwo-point boundary value problemsign-regular kerneleigenvalueeigenfunctionCollatz–Wielandt numbersMathematicsQA1-939ENMathematics, Vol 9, Iss 2663, p 2663 (2021)
institution DOAJ
collection DOAJ
language EN
topic <i>n</i>-th order linear differential equation
two-point boundary value problem
sign-regular kernel
eigenvalue
eigenfunction
Collatz–Wielandt numbers
Mathematics
QA1-939
spellingShingle <i>n</i>-th order linear differential equation
two-point boundary value problem
sign-regular kernel
eigenvalue
eigenfunction
Collatz–Wielandt numbers
Mathematics
QA1-939
Pedro Almenar
Lucas Jódar
Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
description This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to be determined, the recursive application of the operator associated to the equivalent integral problem to functions belonging to such a cone, and the calculation of the Collatz–Wielandt numbers of the resulting functions.
format article
author Pedro Almenar
Lucas Jódar
author_facet Pedro Almenar
Lucas Jódar
author_sort Pedro Almenar
title Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
title_short Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
title_full Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
title_fullStr Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
title_full_unstemmed Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
title_sort accurate estimations of any eigenpairs of <i>n</i>-th order linear boundary value problems
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/bc2eb4fb9a004314a1abfc90ffd9d909
work_keys_str_mv AT pedroalmenar accurateestimationsofanyeigenpairsofinithorderlinearboundaryvalueproblems
AT lucasjodar accurateestimationsofanyeigenpairsofinithorderlinearboundaryvalueproblems
_version_ 1718431907836854272