Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems
This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc2eb4fb9a004314a1abfc90ffd9d909 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bc2eb4fb9a004314a1abfc90ffd9d909 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bc2eb4fb9a004314a1abfc90ffd9d9092021-11-11T18:14:11ZAccurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems10.3390/math92126632227-7390https://doaj.org/article/bc2eb4fb9a004314a1abfc90ffd9d9092021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2663https://doaj.org/toc/2227-7390This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to be determined, the recursive application of the operator associated to the equivalent integral problem to functions belonging to such a cone, and the calculation of the Collatz–Wielandt numbers of the resulting functions.Pedro AlmenarLucas JódarMDPI AGarticle<i>n</i>-th order linear differential equationtwo-point boundary value problemsign-regular kerneleigenvalueeigenfunctionCollatz–Wielandt numbersMathematicsQA1-939ENMathematics, Vol 9, Iss 2663, p 2663 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
<i>n</i>-th order linear differential equation two-point boundary value problem sign-regular kernel eigenvalue eigenfunction Collatz–Wielandt numbers Mathematics QA1-939 |
spellingShingle |
<i>n</i>-th order linear differential equation two-point boundary value problem sign-regular kernel eigenvalue eigenfunction Collatz–Wielandt numbers Mathematics QA1-939 Pedro Almenar Lucas Jódar Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems |
description |
This paper provides a method to bound and calculate any eigenvalues and eigenfunctions of <i>n</i>-th order boundary value problems with sign-regular kernels subject to two-point boundary conditions. The method is based on the selection of a particular type of cone for each eigenpair to be determined, the recursive application of the operator associated to the equivalent integral problem to functions belonging to such a cone, and the calculation of the Collatz–Wielandt numbers of the resulting functions. |
format |
article |
author |
Pedro Almenar Lucas Jódar |
author_facet |
Pedro Almenar Lucas Jódar |
author_sort |
Pedro Almenar |
title |
Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems |
title_short |
Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems |
title_full |
Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems |
title_fullStr |
Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems |
title_full_unstemmed |
Accurate Estimations of Any Eigenpairs of <i>N</i>-th Order Linear Boundary Value Problems |
title_sort |
accurate estimations of any eigenpairs of <i>n</i>-th order linear boundary value problems |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/bc2eb4fb9a004314a1abfc90ffd9d909 |
work_keys_str_mv |
AT pedroalmenar accurateestimationsofanyeigenpairsofinithorderlinearboundaryvalueproblems AT lucasjodar accurateestimationsofanyeigenpairsofinithorderlinearboundaryvalueproblems |
_version_ |
1718431907836854272 |