Network analysis of synthesizable materials discovery
Predicting the synthesizability of inorganic materials is challenging due to the many variables and complex phenomena involved in synthesis. Here, the authors combine material stabilities with a historical analysis of experimental discovery timelines as a temporal network to predict the synthesizabi...
Guardado en:
Autores principales: | Muratahan Aykol, Vinay I. Hegde, Linda Hung, Santosh Suram, Patrick Herring, Chris Wolverton, Jens S. Hummelshøj |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc3f71be28634060b681de832add6283 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery
por: Arunima K. Singh, et al.
Publicado: (2019) -
Predicting synthesizability of crystalline materials via deep learning
por: Ali Davariashtiyani, et al.
Publicado: (2021) -
High-Throughput Study of Lattice Thermal Conductivity in Binary Rocksalt and Zinc Blende Compounds Including Higher-Order Anharmonicity
por: Yi Xia, et al.
Publicado: (2020) -
High-throughput computational design of cathode coatings for Li-ion batteries
por: Muratahan Aykol, et al.
Publicado: (2016) -
Alleviating oxygen evolution from Li-excess oxide materials through theory-guided surface protection
por: Yongwoo Shin, et al.
Publicado: (2018)